跳转至内容
Merck
CN

SHG nanoprobes: advancing harmonic imaging in biology.

BioEssays : news and reviews in molecular, cellular and developmental biology (2012-03-07)
William P Dempsey, Scott E Fraser, Periklis Pantazis
摘要

Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
钛酸钡 (IV), nanopowder (cubic crystalline phase), <100 nm particle size (BET), ≥99% trace metals basis
Sigma-Aldrich
钛酸钡 (IV), powder, <3 μm, 99%
Sigma-Aldrich
钛酸钡 (IV), powder, <2 μm, 99.5% trace metals basis