Merck
CN
  • Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains.

Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains.

Bioresource technology (2012-09-04)
Ji-Quan Sun, Lian Xu, Yue-Qin Tang, Fu-Ming Chen, Xiao-Lei Wu
摘要

Three phenol- and alkanes-degrading bacterial strains were isolated from a freshwater sample. Upon the 16S rRNA gene analysis, phenotype and physiological features, the three strains were designated as Acinetobacter sp. with both phenol hydroxylase gene (phe) and alkane monooxygenase gene (alkM) detected. They could simultaneously degrade phenol and n-hexadecane for growth, but prefer phenol than n-hexadecane. Between phenol (400mgl(-1)) and n-hexadecane (400mgl(-1)), n-hexadecane enhanced phenol degradation in mineral salt medium (MSM), while phenol affects negatively the n-hexadecane degradation. However, combination of phenol (400mgl(-1)) and n-hexadecane (400mgl(-1)) in MSM led to higher growth of the strains than the phenol and n-hexadecane separately. The transcription levels of phe and alkM genes supported the physiological properties of the strains.

材料
货号
品牌
产品描述

Sigma-Aldrich
十六烷, ReagentPlus®, 99%
Sigma-Aldrich
十六烷, anhydrous, ≥99%
Supelco
十六烷, analytical standard
Sigma-Aldrich
十六烷, Vetec, reagent grade, 98%