跳转至内容
Merck
CN
  • Spectroscopic analyses on ROS generation catalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 under ultrasonic and visible-light irradiation.

Spectroscopic analyses on ROS generation catalyzed by TiO2, CeO2/TiO2 and Fe2O3/TiO2 under ultrasonic and visible-light irradiation.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2012-10-27)
Mingming Zou, Yumei Kong, Jun Wang, Qi Wang, Zhiqiu Wang, Baoxin Wang, Ping Fan
摘要

In this work, the TiO2, CeO2/TiO2 and Fe2O3/TiO2 powders were irradiated, respectively, by ultrasound and visible-light, and the generation of reactive oxygen species (ROS) were estimated by the method of Oxidation-Extraction Photometry (OEP). That is, the 1,5-diphenyl carbazide (DPCI) can be oxidized by generated ROS into 1,5-diphenyl carbazone (DPCO), which can be extracted by mixed solvent of benzene and carbon tetrachloride. The DPCO extract liquor displays an obvious absorbance at 563 nm wavelength. In addition, some influencing factors, such as (ultrasonic or visible-light) irradiation time, catalyst addition amount and DPCI concentration, on the generation of ROS were also reviewed. The results indicated that the quantities of generated ROS increase with the increase of (ultrasonic or visible-light) irradiation time and catalyst addition amount. Moreover, the displayed quantities of ROS are also related with DPCI concentration. And then, several radical scavengers were used to determine the kinds of the generated ROS. At last, the researches on the sonocatalytic and photocatalytic degradation of several organic dyes have also been performed. It is wished that this paper might offer some important subjects for broadening the applications of sonocatalytic and photocatalytic technologies in future environment treatment.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氧化铈 IV, nanopowder, <25 nm particle size (BET)
Sigma-Aldrich
1,5-二苯卡巴肼, ACS reagent
Sigma-Aldrich
氧化铈 IV, powder, <5 μm, 99.9% trace metals basis
Sigma-Aldrich
氧化铈 IV, ≥99.0%
Sigma-Aldrich
氧化铈 IV, nanopowder, <50 nm particle size (BET), 99.95% trace rare earth metals basis
Sigma-Aldrich
1,5-二苯卡巴肼, reagent grade
Supelco
1,5-二苯卡巴肼, reag. Ph. Eur., ≥98.0%
Sigma-Aldrich
氧化铈(IV), nanoparticles, <25 nm particle size, 10 wt. % in H2O
Sigma-Aldrich
氧化铈 IV, powder, 99.995% trace metals basis
Sigma-Aldrich
氧化铈(IV),分散体, 20 wt. % colloidal dispersion in 2.5% acetic acid, 30-50 nm avg. part. size