Merck
CN
  • Air oxygenation chemistry of 4-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands: synthesis, structure, magnetic and computational studies.

Air oxygenation chemistry of 4-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands: synthesis, structure, magnetic and computational studies.

Dalton transactions (Cambridge, England : 2003) (2012-11-23)
Ishita Banerjee, Pabitra Narayan Samanta, Kalyan Kumar Das, Rodica Ababei, Marguerite Kalisz, Adrien Girard, Corine Mathonière, M Nethaji, Rodolphe Clérac, Mahammad Ali
摘要

Four dinuclear bis(μ-Cl) bridged copper(II) complexes, [Cu(2)(μ-Cl)(2)(L(X))(2)](ClO(4))(2) (L(X) = N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L(X) ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH(2)) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu(t)-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.

材料
货号
品牌
产品描述

Sigma-Aldrich
吡唑, 98%
Sigma-Aldrich
3,5-二甲基吡唑, 99%
Sigma-Aldrich
3,5-二甲基吡唑, produced by Wacker Chemie AG, Burghausen, Germany, ≥99.0% (GC)