- Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
Experimental and simulation studies of anti-reflection sub-micron conical structures on a GaAs substrate.
In order to reduce surface reflection, anti-reflective (AR) coatings are widely used on the surfaces of solar cells to improve the efficiency of photoelectric conversion. This study employed colloidal lithography with a dry etching process to fabricate sub-micron anti-reflection structures on a GaAs substrate. Etching parameters, such as RF power and etching gas were investigated to determine their influence on surface morphology. We fabricated an array of conical structures 550 nm in diameter and 450 nm in height. The average reflectance of a bare GaAs wafer was reduced from 35.0% to 2.3% across a spectral range of 300 nm - 1200 nm. The anti-reflective performance of SWSs was also calculated using Rigorous Coupled Wave Analysis (RCWA) method. Both simulation and experiment results demonstrate a high degree of similarity.