Merck
CN
  • Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate.

Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate.

Environmental pollution (Barking, Essex : 1987) (2013-03-26)
Dickson Y S Yan, Irene M C Lo
摘要

The effectiveness and mechanisms of naphthalene and metal removal from artificially contaminated soil by FeEDTA/FeEDDS-activated persulfate were investigated through batch experiments. Using FeEDTA-activated persulfate, higher naphthalene removal from the soil at 7 h was achieved (89%), compared with FeEDDS-activated persulfate (75%). The removal was mainly via the dissolution of naphthalene partitioned on mineral surfaces, followed by activated persulfate oxidation. Although EDDS is advantageous over EDTA in terms of biodegradability, it is not preferable for iron chelate-activated persulfate oxidation since persulfate was consumed to oxidize EDDS, resulting in persulfate inadequacy for naphthalene oxidation. Besides, 55 and 40% of naphthalene were removed by FeEDTA and FeEDDS alone, respectively. Particularly, 21 and 9% of naphthalene were degraded in the presence of FeEDTA and FeEDDS alone, respectively, which caused by electrons transfer among dissolved organic matter, Fe(2+)/Fe(3+) and naphthalene. Over 35, 36 and 45% of Cu, Pb and Zn were removed using FeEDTA/FeEDDS-activated persulfate.

材料
货号
品牌
产品描述

Sigma-Aldrich
萘, 99%
Supelco
萘, analytical standard
Supelco
熔点标准品 79-81°C, analytical standard
Sigma-Aldrich
萘, suitable for scintillation, ≥99%
Supelco
萘 溶液, certified reference material, 5000 μg/mL in methanol
Supelco
萘, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland