Merck
CN
  • The surface reactivity and implied toxicity of ash produced from sugarcane burning.

The surface reactivity and implied toxicity of ash produced from sugarcane burning.

Environmental toxicology (2012-03-21)
Jennifer S Le Blond, Maura Tomatis, Claire J Horwell, Christina Dunster, Fiona Murphy, Ingrid Corazzari, Francesca Grendene, Francesco Turci, Elena Gazzano, Dario Ghigo, Ben J Williamson, Clive Oppenheimer, Bice Fubini
摘要

Sugarcane combustion generates fine-grained particulate that has the potential to be a respiratory health hazard because of its grain size and composition. In particular, conversion of amorphous silica to crystalline forms during burning may provide a source of toxic particles. In this study, we investigate and evaluate the toxicity of sugarcane ash and bagasse ash formed from commercial sugarcane burning. Experiments to determine the main physicochemical properties of the particles, known to modulate biological responses, were combined with cellular toxicity assays to gain insight into the potential reactions that could occur at the particle-lung interface following inhalation. The specific surface area of the particles ranged from ∼16 to 90 m(2) g(-1) . The samples did not generate hydroxyl- or carbon-centered radicals in cell-free tests. However, all samples were able to 'scavenge' an external source of hydroxyl radicals, which may be indicative of defects on the particle surfaces that may interfere with cellular processes. The bioavailable iron on the particle surfaces was low (2-3 μmol m(-2) ), indicating a low propensity for iron-catalyzed radical generation. The sample surfaces were all hydrophilic and slightly acidic, which may be due to the presence of oxygenated (functional) groups. The ability to cause oxidative stress and membrane rupture in red blood cells (hemolysis) was found to be low, indicating that the samples are not toxic by the mechanisms tested. Cytotoxicity of sugarcane ash was observed, by measuring lactate dehydrogenase release, after incubation of relatively high concentrations of ash with murine alveolar macrophage cells. All samples induced nitrogen oxide release (although only at very high concentrations) and reactive oxygen species generation (although the bagasse samples were less potent than the sugarcane ash). However, the samples induced significantly lower cytotoxic effects and nitrogen oxide generation when compared with the positive control.

材料
货号
品牌
产品描述

Sigma-Aldrich
纤维素, microcrystalline, powder, 20 μm
Sigma-Aldrich
纤维素, fibers, (medium)
Sigma-Aldrich
纤维素, microcrystalline, powder
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
Sigmacell 纤维素, Type 20, 20 μm
Sigma-Aldrich
α纤维素, powder
Sigma-Aldrich
Avicel® PH-101, tested according to Ph. Eur.
Supelco
纤维素, powder, for column chromatography
Sigma-Aldrich
纤维素, colloidal, microcrystalline
Sigma-Aldrich
Sigmacell 纤维素, Type 101, Highly purified, fibers
Sigma-Aldrich
Sigmacell 纤维素, Type 50, 50 μm
Supelco
纤维素, DS-0, powder, suitable for thin layer chromatography (TLC)
Sigma-Aldrich
α纤维素, BioReagent, suitable for insect cell culture
Supelco
纤维素, acid washed, powder, for column chromatography
Supelco
纤维素, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)
Supelco
纤维素, acid washed, from spruce, for column chromatography