Merck
CN
  • Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled.

Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled.

Trends in plant science (2012-07-13)
Martin Bringmann, Benoit Landrein, Christian Schudoma, Olivier Hamant, Marie-Theres Hauser, Staffan Persson
摘要

Directed plant cell growth is governed by deposition and alterations of cell wall components under turgor pressure. A key regulatory element of anisotropic growth, and hence cell shape, is the directional deposition of cellulose microfibrils. The microfibrils are synthesized by plasma membrane-located cellulose synthase complexes that co-align with and move along cortical microtubules. That the parallel relation between cortical microtubules and extracellular microfibrils is causal has been named the alignment hypothesis. Three recent studies revealed that the previously identified pom2 mutant codes for a large cellulose synthases interacting (CSI1) protein which also binds cortical microtubules. This review summarizes these findings, provides structure-function models and discusses the inferred mechanisms in the context of plant growth.

材料
货号
品牌
产品描述

Sigma-Aldrich
纤维素, microcrystalline, powder, 20 μm
Sigma-Aldrich
纤维素, fibers, (medium)
Sigma-Aldrich
纤维素, microcrystalline, powder
Supelco
Avicel® PH-101, ~50 μm particle size
Sigma-Aldrich
Sigmacell 纤维素, Type 20, 20 μm
Sigma-Aldrich
α纤维素, powder
Sigma-Aldrich
Avicel® PH-101, tested according to Ph. Eur.
Supelco
纤维素, powder, for column chromatography
Sigma-Aldrich
纤维素, colloidal, microcrystalline
Sigma-Aldrich
Sigmacell 纤维素, Type 101, Highly purified, fibers
Sigma-Aldrich
Sigmacell 纤维素, Type 50, 50 μm
Supelco
纤维素, DS-0, powder, suitable for thin layer chromatography (TLC)
Sigma-Aldrich
α纤维素, BioReagent, suitable for insect cell culture
Supelco
纤维素, acid washed, powder, for column chromatography
Supelco
纤维素, DFS-0, microcrystalline, suitable for thin layer chromatography (TLC)
Supelco
纤维素, acid washed, from spruce, for column chromatography