跳转至内容
Merck
CN
  • Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments.

Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments.

Journal of endodontics (2013-01-17)
Ya Shen, Hui-min Zhou, Yu-feng Zheng, Bin Peng, Markus Haapasalo
摘要

The performance and mechanical properties of nickel-titanium (NiTi) instruments are influenced by factors such as cross-section, flute design, raw material, and manufacturing processes. Many improvements have been proposed by manufacturers during the past decade to provide clinicians with safer and more efficient instruments. The mechanical performance of NiTi alloys is sensitive to their microstructure and associated thermomechanical treatment history. Heat treatment or thermal processing is one of the most fundamental approaches toward adjusting the transition temperature in NiTi alloy, which affects the fatigue resistance of NiTi endodontic files. The newly developed NiTi instruments made from controlled memory wire, M-Wire (Dentsply Tulsa Dental Specialties, Tulsa, OK), or R-phase wire represent the next generation of NiTi alloys with improved flexibility and fatigue resistance. The advantages of NiTi files for canal cleaning and shaping are decreased canal transportation and ledging, a reduced risk of file fracture, and faster and more efficient instrumentation. The clinician must understand the nature of different NiTi raw materials and their impact on instrument performance because many new instruments are introduced on a regular basis. This review summarizes the metallurgical properties of next-generation NiTi instruments, the impact of thermomechanical treatment on instrument flexibility, and the resistance to cyclic fatigue and torsion. The aim of this review was to provide clinicians with the knowledge necessary for evidence-based practices, maximizing the benefits from the selection and application of NiTi rotary instruments for root canal treatment.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
Raney®-镍, W.R. Grace and Co. Raney® 2400, slurry, in H2O, active catalyst
Sigma-Aldrich
镍, powder, <150 μm, 99.99% trace metals basis
镍, rod, 100mm, diameter 1.5mm, 99.99+%
Sigma-Aldrich
镍, foil, thickness 0.5 mm, 99.98% trace metals basis
钛, mesh, 100x100mm, nominal aperture 0.19mm, wire diameter 0.23mm, 60x60 wires/inch, open area 20%, twill weave
Sigma-Aldrich
钛, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
镍, powder, <1 μm, 99.8% trace metals basis
Sigma-Aldrich
镍, wire, diam. 0.25 mm, ≥99.9%
Sigma-Aldrich
镍, rod, diam. 6.35 mm, ≥99.99% trace metals basis
钛, mesh, 100x100mm, nominal aperture 4.3mm, wire diameter 1.5mm, 4.4x4.4 wires/inch, open area 94%, platinized diamond mesh
镍, pellets, 100g, max. size 10mm, 99.999%
Sigma-Aldrich
镍, wire, diam. 0.5 mm, ≥99.9% trace metals basis
镍, mesh, 30x30mm, nominal aperture 0.34mm, thickness 0.025mm, wire diameter 0.041mm, 70 wires/inch, open area 80%, electro-formed mesh, 99.9%
Sigma-Aldrich
镍, wire, diam. 0.5 mm, ≥99.99% trace metals basis
Sigma-Aldrich
钛, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
镍, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
镍, sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.95% trace metals basis
Sigma-Aldrich
镍, foil, thickness 0.25 mm, 99.995% trace metals basis
镍, foil, 100x100mm, thickness 1.6mm, 99%
镍, foil, light tested, 150x150mm, thickness 0.025mm, 99.9%
镍, mesh, 100x250mm, nominal aperture 0.73mm, wire diameter 0.25mm, 26x26 wires/inch, open area 55%, plain weave mesh, 99%
镍, pellets, 100g, max. size 5mm, 99.99+%
钛, rod, 10mm, diameter 50mm, 99.99+%
镍, wire reel, 100m, diameter 0.025mm, as drawn, 99.98%
钛, rod, 25mm, diameter 50mm, 99.99+%
Sigma-Aldrich
钛, wire, diam. 0.5 mm, 99.99% trace metals basis
钛, wire, straight, 1000mm, diameter 1.0mm, as drawn, 99.6+%
镍, mesh, 65x65mm, nominal aperture 0.34mm, thickness 0.025mm, wire diameter 0.041mm, 70 wires/inch, open area 80%, electro-formed mesh, 99.9%
镍, foil, 100x100mm, thickness 0.1mm, annealed, 99%
镍, mesh, 130x130mm, nominal aperture 0.04mm, thickness 0.004mm, wire diameter 0.011mm, 500 wires/inch, open area 60%, electro-formed mesh, 99.9%