跳转至内容
Merck
CN
  • Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling.

Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling.

Toxicology and applied pharmacology (2014-05-23)
Tonje Skuland, Johan Ovrevik, Marit Låg, Per Schwarze, Magne Refsnes
摘要

Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and-epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinases (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
LUDOX ® AS-40 胶态二氧化硅, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-40胶态氧化硅, 40 wt. % suspension in H2O
Sigma-Aldrich
二氧化硅, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
LUDOX® TM-50 胶态氧化硅, 50 wt. % suspension in H2O
Sigma-Aldrich
二氧化硅, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
二氧化硅, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
LUDOX ® HS-30 胶态二氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
二氧化硅, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
LUDOX®SM胶体二氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
介孔结构的二氧化硅, MCM-41 type (hexagonal)
Sigma-Aldrich
LUDOX ® TM-40 胶态二氧化硅, 40 wt. % suspension in H2O
Sigma-Aldrich
二氧化硅
Sigma-Aldrich
LUDOX ® AS-30 胶态二氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX ® AM 胶态二氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX ® TMA 胶态二氧化硅, 34 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® CL 胶态氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® LS 胶态氧化硅, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® CL-X 胶态氧化硅, 45 wt. % suspension in H2O
Sigma-Aldrich
介孔结构的二氧化硅, MSU-F (cellular foam)