跳转至内容
Merck
CN
  • Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

Effect of protic ionic liquid and surfactant structure on partitioning of polyoxyethylene non-ionic surfactants.

Chemphyschem : a European journal of chemical physics and physical chemistry (2014-05-28)
Inga L Topolnicki, Paul A FitzGerald, Rob Atkin, Gregory G Warr
摘要

The partitioning constants and Gibbs free energies of transfer of poly(oxyethylene) n-alkyl ethers between dodecane and the protic ionic liquids (ILs) ethylammonium nitrate (EAN) and propylammonium nitrate (PAN) are determined. EAN and PAN have a sponge-like nanostructure that consists of interpenetrating charged and apolar domains. This study reveals that the ILs solvate the hydrophobic and hydrophilic parts of the amphiphiles differently. The ethoxy groups are dissolved in the polar region of both ILs by means of hydrogen bonds. The environment is remarkably water-like and, as in water, the solubility of the ethoxy groups in EAN decreases on warming, which underscores the critical role of the IL hydrogen-bond network for solubility. In contrast, amphiphile alkyl chains are not preferentially solvated by the charged or uncharged regions of the ILs. Rather, they experience an average IL composition and, as a result, partitioning from dodecane into the IL increases as the cation alkyl chain is lengthened from ethyl to propyl, because the IL apolar volume fraction increases. Together, these results show that surfactant dissolution in ILs is related to structural compatibility between the head or tail group and the IL nanostructure. Thus, these partitioning studies reveal parameters for the effective molecular design of surfactants in ILs.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
氧化铝, standard grade, Brockmann I, activated, basic
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
氧化铝, activated, Brockmann I, standard grade, neutral
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
十二烷, ReagentPlus®, ≥99%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
氧化铝, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
氧化铝, Brockmann I, standard grade, activated, acidic
Sigma-Aldrich
氧化铝, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
氧化铝, powder, 99.99% trace metals basis
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Supelco
甲醇, analytical standard
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
十二烷, anhydrous, ≥99%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
氧化铝, pellets, 3 mm
Sigma-Aldrich
氧化铝, Corundum, α-phase, -100 mesh
Supelco
氧化铝, activated, neutral, Brockmann Activity I
Supelco
十二烷, analytical standard