跳转至内容
Merck
CN

Effects of adolescent caffeine consumption on cocaine sensitivity.

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology (2014-10-21)
Casey E O'Neill, Sophia C Levis, Drew C Schreiner, Jose Amat, Steven F Maier, Ryan K Bachtell
摘要

Caffeine is the most commonly used psychoactive substance, and consumption by adolescents has risen markedly in recent years. We identified the effects of adolescent caffeine consumption on cocaine sensitivity and determined neurobiological changes within the nucleus accumbens (NAc) that may underlie caffeine-induced hypersensitivity to cocaine. Male Sprague-Dawley rats consumed caffeine (0.3 g/l) or water for 28 days during adolescence (postnatal day 28-55; P28-P55) or adulthood (P67-P94). Testing occurred in the absence of caffeine during adulthood (P62-82 or P101-121). Cocaine-induced and quinpirole (D2 receptor agonist)-induced locomotion was enhanced in rats that consumed caffeine during adolescence. Adolescent consumption of caffeine also enhanced the development of a conditioned place preference at a sub-threshold dose of cocaine (7.5 mg/kg, i.p.). These behavioral changes were not observed in adults consuming caffeine for an equivalent period of time. Sucrose preferences were not altered in rats that consumed caffeine during adolescence, suggesting there are no differences in natural reward. Caffeine consumption during adolescence reduced basal dopamine levels and augmented dopamine release in the NAc in response to cocaine (5 mg/kg, i.p.). Caffeine consumption during adolescence also increased the expression of the dopamine D2 receptor, dopamine transporter, and adenosine A1 receptor and decreased adenosine A2A receptor expression in the NAc. Consumption of caffeine during adulthood increased adenosine A1 receptor expression in the NAc, but no other protein expression changes were observed. Together these findings suggest that caffeine consumption during adolescence produced changes in the NAc that are evident in adulthood and may contribute to increases in cocaine-mediated behaviors.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
腺苷, ≥99%
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
盐酸 溶液, for amino acid analysis, ~6 M in H2O
Supelco
氯化氢 – 甲醇 溶液, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
腺苷, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸 溶液, 32 wt. % in H2O, FCC
Sigma-Aldrich
氯化氢 溶液, 1.0 M in acetic acid
Sigma-Aldrich
盐酸, puriss., 24.5-26.0%
Supelco
氯化氢 – 乙醇 溶液, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
腺苷
Supelco
氯化氢 – 2-丙醇 溶液, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
腺苷, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
咖啡因, BioXtra
腺苷, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
腺苷, Vetec, reagent grade, 98%