跳转至内容
Merck
CN
  • (18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: a PET study.

(18)F-fluoromethylcholine (FCho), (18)F-fluoroethyltyrosine (FET), and (18)F-fluorodeoxyglucose (FDG) for the discrimination between high-grade glioma and radiation necrosis in rats: a PET study.

Nuclear medicine and biology (2014-09-15)
Julie Bolcaen, Benedicte Descamps, Karel Deblaere, Tom Boterberg, Filip De Vos Pharm, Jean-Pierre Kalala, Caroline Van den Broecke, Elke Decrock, Luc Leybaert, Christian Vanhove, Ingeborg Goethals
摘要

Discrimination between (high-grade) brain tumor recurrence and radiation necrosis (RN) remains a diagnostic challenge because both entities have similar imaging characteristics on conventional magnetic resonance imaging (MRI). Metabolic imaging, such as positron emission tomography (PET) could overcome this diagnostic dilemma. In this study, we investigated the potential of 2-[(18)F]-fluoro-2-deoxy-D-glucose ((18)F-FDG), O-(2-[(18)F]-fluoroethyl)-L-tyrosine ((18)F-FET), and [(18)F]-Fluoromethyl-dimethyl-2-hydroxyethylammonium ((18)F-fluoromethylcholine, (18)F-FCho) PET in discriminating high-grade tumor from RN. We developed a glioblastoma (GB) rat model by inoculating F98 GB cells into the right frontal region. Induction of RN was achieved by irradiating the right frontal region with 60 Gy using three arcs with a beam aperture of 3×3 mm (n=3). Dynamic PET imaging with (18)F-FDG, (18)F-FET, and (18)F-FCho, as well as (18)F-FDG PET at a delayed time interval (240 min postinjection), was acquired. MRI revealed contrast-enhancing tumors at 15 days after inoculation (n=4) and contrast-enhancing RN lesions 5-6 months postirradiation (n=3). On (18)F-FDG PET, the mean lesion-to-normal ratio (LNRmean) was significantly higher in GB than in RN (p=0.034). The difference in the LNRmean between tumors and RN was higher on the late (18)F-FDG PET images than on the PET images reconstructed from the last time frame of the dynamic acquisition (this is at a conventional time interval). LNRs obtained from (18)F-FCho PET were not significantly different between GB and RN (p=1.000). On (18)F-FET PET, the LNRmean was significantly higher in GB compared to RN (p=0.034). Unlike (18)F-FCho, (18)F-FDG and (18)F-FET PET were effective in discriminating GB from RN. Interestingly, in the case of (18)F-FDG, delayed PET seems particularly useful. Our results suggest that (delayed) (18)F-FDG and (18)F-FET PET can be used to discriminate GB (recurrence) from RN. Confirmation of these results in clinical studies is needed.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
2-甲基丁烷, ReagentPlus®, ≥99%
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
SAFC
L-谷氨酰胺
Sigma-Aldrich
2-甲基丁烷, ReagentPlus®, ≥99%
Sigma-Aldrich
2-甲基丁烷, suitable for HPLC, ≥99.5%
Sigma-Aldrich
2-甲基丁烷, anhydrous, ≥99%
Sigma-Aldrich
L-谷氨酰胺, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
2-甲基丁烷, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
L-谷氨酰胺, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-谷氨酰胺
Supelco
L-谷氨酰胺, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
2-甲基丁烷, analytical standard
Supelco
L-谷氨酰胺, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-谷氨酰胺, Vetec, reagent grade, ≥99%