跳转至内容
Merck
CN

Inhibition of monoacylglycerol lipase reduces nicotine withdrawal.

British journal of pharmacology (2014-09-27)
P P Muldoon, J Chen, J L Harenza, R A Abdullah, L J Sim-Selley, B F Cravatt, M F Miles, X Chen, A H Lichtman, M I Damaj
摘要

Abrupt discontinuation of nicotine, the main psychoactive component in tobacco, induces a withdrawal syndrome in nicotine-dependent animals, consisting of somatic and affective signs, avoidance of which contributes to drug maintenance. While blockade of fatty acid amide hydrolase, the primary catabolic enzyme of the endocannabinoid arachidonoylethanolamine (anandamide), exacerbates withdrawal responses in nicotine-dependent mice, the role of monoacylglycerol lipase (MAGL), the main hydrolytic enzyme of a second endocannabinoid 2-arachidonylglycerol (2-AG), in nicotine withdrawal remains unexplored. To evaluate the role of MAGL enzyme inhibition in nicotine withdrawal, we initially performed a genetic correlation approach using the BXD recombinant inbred mouse panel. We then assessed nicotine withdrawal intensity in the mouse after treatment with the selective MAGL inhibitor, JZL184, and after genetic deletion of the enzyme. Lastly, we assessed the association between genotypes and smoking withdrawal phenotypes in two human data sets. BXD mice displayed significant positive correlations between basal MAGL mRNA expression and nicotine withdrawal responses, consistent with the idea that increased 2-AG brain levels may attenuate withdrawal responses. Strikingly, the MAGL inhibitor, JZL184, dose-dependently reduced somatic and aversive withdrawal signs, which was blocked by rimonabant, indicating a CB1 receptor-dependent mechanism. MAGL-knockout mice also showed attenuated nicotine withdrawal. Lastly, genetic analyses in humans revealed associations of the MAGL gene with smoking withdrawal in humans. Overall, our findings suggest that MAGL inhibition maybe a promising target for treatment of nicotine dependence.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
乙醇,Pure 190纯度, for molecular biology
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
酒精, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
腺苷, ≥99%
Supelco
无水乙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
酒精, standard for GC
Sigma-Aldrich
腺苷, BioReagent, suitable for cell culture
Sigma-Aldrich
酒精, puriss. p.a., absolute, ≥99.8% (GC)
Supelco
Ethanol 溶液, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
酒精, tested according to Ph. Eur.
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
美加明 盐酸盐
Sigma-Aldrich
腺苷
Supelco
腺苷, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
80% v/v 乙醇固定液, suitable for fixing solution (blood films)
Sigma-Aldrich
纯乙醇, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
腺苷, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
酒精, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
纯乙醇, 160 proof, Excise Tax-free, Permit for use required
Sigma-Aldrich
腺苷, Vetec, reagent grade, 98%