跳转至内容
Merck
CN
  • Three-Dimensional Visualization of Developing Neurovascular Architecture in the Craniofacial Region of Embryonic Mice.

Three-Dimensional Visualization of Developing Neurovascular Architecture in the Craniofacial Region of Embryonic Mice.

Anatomical record (Hoboken, N.J. : 2007) (2015-06-09)
Toshiaki Sugimoto, Yuji Taya, Yoshihito Shimazu, Yuuichi Soeno, Kaori Sato, Takaaki Aoba
摘要

Recent studies have highlighted the mechanism of vascular and axonal guidance to ensure proper morphogenesis and organogenesis. We aimed to perform global mapping of developing neurovascular networks during craniofacial development of embryonic mice. To this end, we developed histology-based three-dimensional (3D) reconstructions using paraffin-embedded serial sections obtained from mouse embryos. All serial sections were dual-immunolabeled with Pecam1 and Pgp9.5/Gap43 cocktail antibodies. All immunolabeled serial sections were digitized with virtual microscopy to acquire high spatial resolution images. The 3D reconstructs warranted superior positional accuracy to trace the long-range connectivity of blood vessels and individual cranial nerve axons. It was feasible to depict simultaneously the details of angiogenic sprouting and axon terminal arborization and to assess quantitatively the locoregional proximity between blood vessels and cranial nerve axons. Notably, 3D views of the craniofacial region revealed the following: Branchial arch arteries and blood capillary plexi were formed without accompanying nerves at embryonic day (E) 9.5. Cranial nerve axons began to grow into the branchial arches, developing a labyrinth of small blood vessels at E10.5. Vascular remodeling occurred, and axon terminals of the maxillary, mandibular, chorda tympani, and hypoglossal nerve axons had arborized around the lateral lingual swellings at E11.5. The diverged patterning of trigeminal nerves and the arterial branches from the carotid artery became congruent at E11.5. The overall results support the advantage of dual-immunolabeling and 3D reconstruction technology to document the architecture and wiring of the developing neurovascular networks in mouse embryos.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
Monoclonal Anti-Growth Associated Protein-43 antibody produced in mouse, clone GAP-7B10, ascites fluid