跳转至内容
Merck
CN
  • Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals.

Trafficking through the late endosome significantly impacts Candida albicans tolerance of the azole antifungals.

Antimicrobial agents and chemotherapy (2015-02-11)
Arturo Luna-Tapia, Morgan E Kerns, Karen E Eberle, Branko S Jursic, Glen E Palmer
摘要

The azole antifungals block ergosterol biosynthesis by inhibiting lanosterol demethylase (Erg11p). The resulting depletion of cellular ergosterol and the accumulation of "toxic" sterol intermediates are both thought to compromise plasma membrane function. However, the effects of ergosterol depletion upon the function of intracellular membranes and organelles are not well described. The purpose of this study was to characterize the effects of azole treatment upon the integrity of the Candida albicans vacuole and to determine whether, in turn, vacuolar trafficking influences azole susceptibility. Profound fragmentation of the C. albicans vacuole can be observed as an early consequence of azole treatment, and it precedes significant growth inhibition. In addition, a C. albicans vps21Δ/Δ mutant, blocked in membrane trafficking through the late endosomal prevacuolar compartment (PVC), is able to grow significantly more than the wild type in the presence of several azole antifungals under standard susceptibility testing conditions. Furthermore, the vps21Δ/Δ mutant is able to grow despite the depletion of cellular ergosterol. This phenotype resembles an exaggerated form of "trailing growth" that has been described for some clinical isolates. In contrast, the vps21Δ/Δ mutant is hypersensitive to drugs that block alternate steps in ergosterol biosynthesis. On the basis of these results, we propose that endosomal trafficking defects may lead to the cellular "redistribution" of the sterol intermediates that accumulate following inhibition of ergosterol biosynthesis. Furthermore, the destination of these intermediates, or the precise cellular compartments in which they accumulate, may be an important determinant of their toxicity and thus ultimately antifungal efficacy.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
3-吗啉丙磺酸, ≥99.5% (titration)
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
3-吗啉丙磺酸, BioPerformance Certified, suitable for cell culture, ≥99.5% (titration)
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
氟康唑, ≥98% (HPLC), powder
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
伊曲康唑, ≥98% (HPLC)
Sigma-Aldrich
氢氧化钾, ≥99.95% trace metals basis
Sigma-Aldrich
盐酸 溶液, 32 wt. % in H2O, FCC
Sigma-Aldrich
麦角甾醇, ≥75%
Sigma-Aldrich
酮康唑, 99.0-101.0% (EP, titration)
Sigma-Aldrich
3-吗啉丙磺酸, BioXtra, ≥99.5% (titration)
Sigma-Aldrich
3-吗啉丙磺酸, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
3-吗啉丙磺酸, Vetec, reagent grade