- Effects of CYP2C19 Polymorphism on Endothelial Function, Arterial Stiffness and Inflammation in Coronary Artery Disease Patients Under Clopidogrel Treatment.
Effects of CYP2C19 Polymorphism on Endothelial Function, Arterial Stiffness and Inflammation in Coronary Artery Disease Patients Under Clopidogrel Treatment.
Clopidogrel's ability to inhibit platelet function determined its clinical usefulness. The role of CYP2C19*2 genotype on antiplatelet treatment is recently under question. Arterial wall properties and inflammation are key players in atherosclerosis development. Hence, we evaluated the impact of CYP2C19*2 genetic polymorphism on endothelial function, arterial stiffness and inflammation in coronary artery disease (CAD) patients receiving clopidogrel treatment. In this study we enrolled 408 consecutive patients with stable CAD under dual antiplatelet therapy (clopidogrel 75mg/day, aspirin 100mg/day), 30 days after percutaneous coronary intervention. Measurement of flow-mediated dilation (FMD) of the brachial artery was used to evaluate endothelial function. Carotid-femoral pulse wave velocity (PWV) and augmentation index (AIx) was measured to estimate arterial stiffness. Real time polymerase chain reaction was used for the genotyping of CYP2C19*2. Levels of tumor necrosis factor alpha (TNF-a) and interleukin 6 (IL-6) were measured with ELISA. We found no difference in basic clinical and demographic characteristics nor in FMD, PWV, AIx and inflammatory status (p=NS for all) between CYP2C19 homozygotes for the wild type; carriers of reduced function allele and homozygotes for the reduced function allele. CYP2C19*2 loss of action polymorphism causes no impact on vascular function and inflammatory status in stable CAD patients receiving clopidogrel treatment.