跳转至内容
Merck
CN
  • Effect of Different In Vitro Aging Methods on Color Stability of a Dental Resin-Based Composite Using CIELAB and CIEDE2000 Color-Difference Formulas.

Effect of Different In Vitro Aging Methods on Color Stability of a Dental Resin-Based Composite Using CIELAB and CIEDE2000 Color-Difference Formulas.

Journal of esthetic and restorative dentistry : official publication of the American Academy of Esthetic Dentistry ... [et al.] (2015-06-03)
Dayane Carvalho Ramos Salles de Oliveira, Ana Paula Almeida Ayres, Mateus Garcia Rocha, Marcelo Giannini, Regina Maria Puppin Rontani, Jack L Ferracane, Mario Alexandre Coelho Sinhoreti
摘要

To evaluate the effect of different in vitro aging methods on color change (CC) of an experimental dental resin-based composite using CIELAB (ΔEab ) and CIEDE2000 (ΔE00 ) color-difference formulas. The CC was evaluated with a spectrophotometer (CM700d, Konica Minolta, Tokyo, Japan) according to the CIE chromatic space. Disk-shaped specimens (Φ = 5 × 1 mm thick) (N = 10) were submitted to different in vitro aging methods: 30 days of water aging (WA); 120 hours of ultraviolet light aging (UVA); or 300 hours of an accelerated artificial aging (AAA) method with cycles of 4 hours of UV-B light exposure and 4 hours of moisture condensation to induce CC. The temperature was standardized at 37°C for all aging methods. CC was evaluated with ΔEab and ΔE00 formulas. Differences in individual Lab coordinates were also calculated. Data for the individual color parameters were submitted to one-way analysis of variance and Tukey's test for multiple comparisons (α = 0.05). All in vitro aging methods tested induced CC, in the following order: WA: ΔEab = 0.83 (0.1); ΔE00  = 1.15 (0.1) < AAA: ΔEab  = 5.64 (0.2); ΔE00  = 5.01 (0.1) < UVA: ΔEab  = 6.74 (0.2); ΔE00  = 6.03 (0.4). No changes in L* or a* coordinates were ≥1; the methods with UV aging showed a yellowing effect due a large positive change in b*. All in vitro aging methods tested induced a CC, but to different extents. Changes in color followed similar trends, but with different absolute values when calculated with the CIELAB and the CIEDE2000 formulas. Establishing the efficacy of different artificial aging methods and differences between color change using CIELAB and CIEDE2000 formulas are important to standardize color stability evaluations and facilitate the comparison of outcomes from different studies in the literature.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
乙醇,Pure 190纯度, for molecular biology
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
4-(二甲氨基)苯甲酸乙酯, ≥99%
Sigma-Aldrich
酒精, puriss. p.a., absolute, ≥99.8% (GC)
Supelco
Ethanol 溶液, certified reference material, 2000 μg/mL in methanol
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
80% v/v 乙醇固定液, suitable for fixing solution (blood films)
Sigma-Aldrich
纯乙醇, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
酒精, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
纯乙醇, 160 proof, Excise Tax-free, Permit for use required