Merck
CN

Structure-function analysis of the bestrophin family of anion channels.

The Journal of biological chemistry (2003-08-09)
Takashi Tsunenari, Hui Sun, John Williams, Hugh Cahill, Philip Smallwood, King-Wai Yau, Jeremy Nathans
摘要

The bestrophins are a newly described family of anion channels unrelated in primary sequence to any previously characterized channel proteins. The human genome codes for four bestrophins, each of which confers a distinctive plasma membrane conductance on transfected 293 cells. Extracellular treatment with methanethiosulfonate ethyltrimethylammonium (MTSET) of a series of substitution mutants that eliminate one or more cysteines from human bestrophin1 demonstrates that cysteine 69 is the single endogenous cysteine responsible for MTSET inhibition of whole-cell current. Cysteines introduced between positions 78-99 and 223-226 are also accessible to external MTSET, with MTSET modification at positions 79, 80, 83, and 90 producing a 2-6-fold increase in whole-cell current. The latter set of four cysteine-substitution mutants define a region that appears to mediate allosteric control of channel activity. Mapping of transmembrane topography by insertion of N-linked glycosylation sites and tobacco etch virus protease cleavage sites provides evidence for cytosolic N and C termini and an unexpected transmembrane topography with at least three extracellular loops that include positions 60-63, 212-227, and 261-267. These experiments provide the first structural analysis of the bestrophin channel family.