Merck
CN

反应

Fries重排反应是一类重要的有机人名反应,它涉及在催化剂存在下加热时将酚酯转化成邻位或对位酰基酚。适用于该反应的催化剂是布朗斯特酸或路易斯酸,如 HF、AlCl3, BF3, TiCl4, 或 SnCl4。Fries重排反应为邻位、对位选择性反应,用于酰基酚的制备。1 这种有机反应以德国化学家Karl Theophil Fries的名字命名。

德国化学家Karl Theophil Fries

图 1.德国化学家Karl Theophil Fries

光-Fries重排也包括在没有催化剂的情况下,只要紫外光存在,酚酯也可以类似地转化成羟基酮。1

硫杂-Fries重排涉及在二氯甲烷中氯化铝存在下芳基三氟甲磺酸酯转化为三氟甲磺酸亚砜基酚。2

阴离子磷酸-Fries重排包括将芳基磷酸酯 [ArOP(=O)(OR)2] 转化为羟基芳基膦酸酯[o-HO-Ar-P(=O)(OR)2]。这种重排产生具有邻位C-P键的酚。3

材料
Loading

应用

Fries重排已在以下领域得到应用:

  • 研究了离子熔体 [1-丁基-3-甲基咪唑鎓氯铝酸盐 ([BMIm]Cl·xAlCl3)] 作为溶剂和路易斯酸催化剂的应用。 与苯甲酸苯酯的反应得到邻位对位-羟基二苯甲酮。4
对羟基二苯甲酮

图 2.对羟基二苯甲酮

  • 羟基苯乙酮和羟基苯乙酮(药品生产中有用的中间体)的合成。5
  • α-生育酚(维生素 E)的全合成。6
  • 通过TiCl4催化的Fries重排和直接的区域选择性酰化反应,区域选择性合成酰基羟基[2.2]对环烷。7
  • 合成药物和农用化学中间体、热成像材料和有效的抗病毒剂。8
  • 通过三氟甲磺酸钪催化酰基萘的Fries重排合成羟基萘酮。9
  • 用3-甲基-2-丁烯酸芳基酯,通过光-Fries重排和碱催化的分子内oxa-Michael加成反应,光化学一锅法合成 5-、6-和 7-取代的苯并二氢吡喃-4-酮。10

上述综合方案:

Oxa Michael加成反应

图 3.Oxa Michael加成反应

近期研究和趋势

  • 无溶剂、微波介电加热条件下的硫代芳烃的硫杂-Fries重排已得到了研究。8
    据报道,光反应性液晶聚合物薄膜经历了轴选择性的光-Fries重排,并且在线性偏振紫外 (LPUV) 光下表现出光诱导的光学各向异性。1
  • Fries重排已用于全合成muricadienin的关键步骤,muricadienin是反式顺式solamin生物合成中的不饱和推定前体。10
  • 手性二茂铁基磷酸酯的阴离子磷酸-Fries重排产生富含非对映异构体的1,2-P,O-膦酸酯,然后可将其转化为对映体纯的磷烷。13
  • 报道了负载在二氧化硅或其盐Cs2.5H0.5PW12O40 (CsPW)上的杂多酸H3PW12O40(PW)催化芳基酯的液相-Fries重排反应。14
  • 阴离子磷酸-Fries重排已成功应用于二茂铁化学的研究。15
  • Fries重排用于合成抗病毒类黄酮先导化合物,从 2,6-二甲氧基醌开始。16
二甲氧苯醌

图 4.二甲氧苯醌

  • 杂多酸 H3PW12O40已被报道用于乙酸苯酯的Fries重排,是一种高效和环境友好的催化剂。17
乙酸苯酯

图 5.乙酸苯酯

产品列表
Loading

参考文献

1.
Bansal R K. 1996. Synthetic Approaches in Organic Chemistry. Jones & Bartlett Learning.
2.
Chen X, Tordeux M, Desmurs J, Wakselman C. 2003. Thia-Fries rearrangement of aryl triflinates to trifluoromethanesulfinylphenols. Journal of Fluorine Chemistry. 123(1):51-56. https://doi.org/10.1016/s0022-1139(03)00106-4
3.
Taylor C, Watson A. 2004. The Anionic Phospho-Fries Rearrangement. COC. 8(7):623-636. https://doi.org/10.2174/1385272043370717
4.
Harjani JR, Nara SJ, Salunkhe MM. 2001. Fries rearrangement in ionic melts. Tetrahedron Letters. 42(10):1979-1981. https://doi.org/10.1016/s0040-4039(01)00029-6
5.
Jayat F, Picot MJS, Guisnet M. 1996. Solvent effects in liquid phase Fries rearrangement of phenyl acetate over a HBEA zeolite. Catal Lett. 41(3-4):181-187. https://doi.org/10.1007/bf00811488
6.
Termath AO, Velder J, Stemmler RT, Netscher T, Bonrath W, Schmalz H. 2014. Total Synthesis of (2RS)-?-Tocopherol through Ni-Catalyzed 1,4-Addition to a Chromenone Intermediate. Eur. J. Org. Chem.. 2014(16):3337-3340. https://doi.org/10.1002/ejoc.201402240
7.
Rozenberg V, Danilova T, Sergeeva E, Vorontsov E, Starikova Z, Lysenko K, Belokon .Y. Eur J. 2000. Org. Chem. 193295.
8.
Moghaddam FM, Dakamin MG. 2000. Thia-Fries rearrangement of aryl sulfonates in dry media under microwave activation. Tetrahedron Letters. 41(18):3479-3481. https://doi.org/10.1016/s0040-4039(00)00402-0
9.
Kobayashi S, Moriwaki M, Hachiya I. 1995. The catalytic Fries rearrangement of acyloxy naphthalenes using scandium trifluoromethanesulfonate as a catalyst. J. Chem. Soc., Chem. Commun..(15):1527. https://doi.org/10.1039/c39950001527
10.
Iguchi D, Erra-Balsells R, Bonesi SM. 2014. Expeditious photochemical reaction toward the preparation of substituted chroman-4-ones. Tetrahedron Letters. 55(33):4653-4656. https://doi.org/10.1016/j.tetlet.2014.06.081
11.
Uraoka H, Kondo M, Kawatsuki N. 2014. Influence of End Groups in Photoinduced Reorientation of Liquid Crystalline Polymer Films Based on Axis-Selective Photo-Fries Rearrangement. Molecular Crystals and Liquid Crystals. 601(1):79-87. https://doi.org/10.1080/15421406.2014.940508
12.
Adrian J, Stark CBW. 2014. Total Synthesis of Muricadienin, the Putative Key Precursor in the Solamin Biosynthesis. Org. Lett.. 16(22):5886-5889. https://doi.org/10.1021/ol502849y
13.
Korb M, Lang H. 2014. Planar Chirality from the Chiral Pool: Diastereoselective Anionic Phospho-Fries Rearrangements at Ferrocene. Organometallics. 33(22):6643-6659. https://doi.org/10.1021/om500953c
14.
Kozhevnikova E. 2004. Fries rearrangement of aryl esters catalysed by heteropoly acid: catalyst regeneration and reuse. Applied Catalysis A: General. 260(1):25-34. https://doi.org/10.1016/j.apcata.2003.10.008
15.
Korb M, Schaarschmidt D, Lang H. 2014. Anionic Phospho-Fries Rearrangement at Ferrocene: One-Pot Approach to P,O-Substituted Ferrocenes. Organometallics. 33(8):2099-2108. https://doi.org/10.1021/om5002827
16.
Martin-Benlloch X, Elhabiri M, Lanfranchi DA, Davioud-Charvet E. 2014. A Practical and Economical High-Yielding, Six-Step Sequence Synthesis of a Flavone: Application to the Multigram-Scale Synthesis of Ladanein. Org. Process Res. Dev.. 18(5):613-617. https://doi.org/10.1021/op4003642
17.
Kozhevnikova EF, Derouane EG, Kozhevnikov IV. 2002. Heteropoly acid as a novel efficient catalyst for Fries rearrangement. Chem. Commun..(11):1178-1179. https://doi.org/10.1039/b202148j
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?