Merck
CN
  • Coordinated expression of H3K9 histone methyltransferases during tooth development in mice.

Coordinated expression of H3K9 histone methyltransferases during tooth development in mice.

Histochemistry and cell biology (2014-10-09)
Taichi Kamiunten, Hisashi Ideno, Akemi Shimada, Yoshiki Nakamura, Hiroshi Kimura, Kazuhisa Nakashima, Akira Nifuji
ABSTRACT

Tissue-specific gene expression is subjected to epigenetic and genetic regulation. Posttranslational modifications of histone tails alter the accessibility of nuclear proteins to DNA, thus affecting the activity of the regulatory complex of nuclear proteins. Methylation at histone 3 lysine 9 (H3K9) is a crucial modification that affects gene expression and cell differentiation. H3K9 is known to have 0-3 methylation states, and these four methylated states are determined by the expression of sets of histone methyltransferases. During development, teeth are formed through mutual interactions between the mesenchyme and epithelium via a process that is subjected to the epigenetic regulation. In this study, we examined the expression of all H3K9 methyltransferases (H3K9MTases) during mouse tooth development. We found that four H3K9MTases-G9a, Glp, Prdm2, and Suv39h1-were highly expressed in the tooth germ, with expression peaks at around embryonic days 16.5 and 17.5 in mice. Immunohistochemical and in situ hybridization analyses revealed that all four H3K9MTases were enriched in the mesenchyme more than in the epithelium. Substrates of H3K9MTases, H3K9me1, H3K9me2, and H3K9me3 were also enriched in the mesenchyme. Taken together, these data suggested that coordinated expression of four H3K9MTases in the dental mesenchyme might play important roles in tooth development.

MATERIALS
Product Number
Brand
Product Description

Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology
Sigma-Aldrich
Phenol, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Phenol solution, Saturated with 0.1 M citrate buffer, pH 4.3 ± 0.2, BioReagent, for molecular biology
Sigma-Aldrich
Phenol, for molecular biology
Sigma-Aldrich
Liquified Phenol, ≥89.0%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Phenol, puriss., ≥99.5% (GC), meets analytical specification of Ph. Eur., BP, USP, crystalline (detached)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Supelco
Phenol, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, ≥99%
Supelco
Phenol solution, 100 μg/mL in acetonitrile, PESTANAL®, analytical standard
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Chloroform, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
Chloroform, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, ACS spectrophotometric grade, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, contains amylenes as stabilizer, ACS reagent, ≥99.8%
USP
Phenol, United States Pharmacopeia (USP) Reference Standard
Supelco
Chloroform, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Phenol, natural, 97%, FG
Supelco
Chloroform, analytical standard
Sigma-Aldrich
Phenol, contains hypophosphorous as stabilizer, loose crystals, ACS reagent, ≥99.0%