Skip to Content
Merck
CN
  • RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

The European journal of neuroscience (2014-11-29)
Andrew R Chandna, Manoj Nair, Christine Chang, Paul R Pennington, Yasuhiko Yamamoto, Darrell D Mousseau, Verónica A Campanucci
ABSTRACT

Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Supelco
Calcium standard for AAS, analytical standard, 1.000 g/L Ca+2 in hydrochloric acid, traceable to BAM
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, suitable for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Potassium fluoride, BioUltra, ≥99.5% (F)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, 2 M in H2O
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Acetylcholine bromide, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)