Skip to Content
Merck
CN
  • Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis.

Candida albicans OPI1 regulates filamentous growth and virulence in vaginal infections, but not inositol biosynthesis.

PloS one (2015-01-21)
Ying-Lien Chen, Flavia de Bernardis, Shang-Jie Yu, Silvia Sandini, Sarah Kauffman, Robert N Tams, Emily Bethea, Todd B Reynolds
ABSTRACT

ScOpi1p is a well-characterized transcriptional repressor and master regulator of inositol and phospholipid biosynthetic genes in the baker's yeast Saccharomyces cerevisiae. An ortholog has been shown to perform a similar function in the pathogenic fungus Candida glabrata, but with the distinction that CgOpi1p is essential for growth in this organism. However, in the more distantly related yeast Yarrowia lipolytica, the OPI1 homolog was not found to regulate inositol biosynthesis, but alkane oxidation. In Candida albicans, the most common cause of human candidiasis, its Opi1p homolog, CaOpi1p, has been shown to complement a S. cerevisiae opi1∆ mutant for inositol biosynthesis regulation when heterologously expressed, suggesting it might serve a similar role in this pathogen. This was tested in the pathogen directly in this report by disrupting the OPI1 homolog and examining its phenotypes. It was discovered that the OPI1 homolog does not regulate INO1 expression in C. albicans, but it does control SAP2 expression in response to bovine serum albumin containing media. Meanwhile, we found that CaOpi1 represses filamentous growth at lower temperatures (30 °C) on agar, but not in liquid media. Although, the mutant does not affect virulence in a mouse model of systemic infection, it does affect virulence in a rat model of vaginitis. This may be because Opi1p regulates expression of the SAP2 protease, which is required for rat vaginal infections.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Millipore
D-Mannitol, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
D-Mannitol, BioUltra, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-Mannitol, ACS reagent
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
D-Mannitol, meets EP, FCC, USP testing specifications
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
D-Mannitol, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
D-Mannitol, ≥98% (GC), suitable for plant cell culture
Sigma-Aldrich
D-Mannitol, ≥98% (GC)
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-Mannitol, tested according to Ph. Eur.
Supelco
Mannitol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
D-Mannitol, ≥99.9999% (metals basis), for boron determination
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
HEPES
Mannitol, European Pharmacopoeia (EP) Reference Standard
Supelco
Inositol, Pharmaceutical Secondary Standard; Certified Reference Material