Skip to Content
Merck
CN
  • A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites.

A Conserved Deubiquitinating Enzyme Uses Intrinsically Disordered Regions to Scaffold Multiple Protein Interaction Sites.

The Journal of biological chemistry (2015-07-08)
Benjamin J Reed, Melissa N Locke, Richard G Gardner
ABSTRACT

In the canonical view of protein function, it is generally accepted that the three-dimensional structure of a protein determines its function. However, the past decade has seen a dramatic growth in the identification of proteins with extensive intrinsically disordered regions (IDRs), which are conformationally plastic and do not appear to adopt single three-dimensional structures. One current paradigm for IDR function is that disorder enables IDRs to adopt multiple conformations, expanding the ability of a protein to interact with a wide variety of disparate proteins. The capacity for many interactions is an important feature of proteins that occupy the hubs of protein networks, in particular protein-modifying enzymes that usually have a broad spectrum of substrates. One such protein modification is ubiquitination, where ubiquitin is attached to proteins through ubiquitin ligases (E3s) and removed through deubiquitinating enzymes. Numerous proteomic studies have found that thousands of proteins are dynamically regulated by cycles of ubiquitination and deubiquitination. Thus, how these enzymes target their wide array of substrates is of considerable importance for understanding the function of the cell's diverse ubiquitination networks. Here, we characterize a yeast deubiquitinating enzyme, Ubp10, that possesses IDRs flanking its catalytic protease domain. We show that Ubp10 possesses multiple, distinct binding modules within its IDRs that are necessary and sufficient for directing protein interactions important for Ubp10's known roles in gene silencing and ribosome biogenesis. The human homolog of Ubp10, USP36, also has IDRs flanking its catalytic domain, and these IDRs similarly contain binding modules important for protein interactions. This work highlights the significant protein interaction scaffolding abilities of IDRs in the regulation of dynamic protein ubiquitination.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
DL-Dithiothreitol solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Supelco
DL-Dithiothreitol solution, 1 M in H2O
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
SAFC
HEPES
SAFC
HEPES
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis