Skip to Content
Merck
CN
  • Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress.

Single-cell evaluation of red blood cell bio-mechanical and nano-structural alterations upon chemically induced oxidative stress.

Scientific reports (2015-05-08)
Ameya Sinha, Trang T T Chu, Ming Dao, Rajesh Chandramohanadas
ABSTRACT

Erythroid cells, specifically red blood cells (RBCs), are constantly exposed to highly reactive radicals during cellular gaseous exchange. Such exposure often exceeds the cells' innate anti-oxidant defense systems, leading to progressive damage and eventual senescence. One of the contributing factors to this process are alterations to hemoglobin conformation and globin binding to red cell cytoskeleton. However, in addition to the aforementioned changes, it is possible that oxidative damage induces critical changes to the erythrocyte cytoskeleton and corresponding bio-mechanical and nano-structural properties of the red cell membrane. To quantitatively characterize how oxidative damage accounts for such changes, we employed single-cell manipulation techniques such as micropipette aspiration and atomic force microscopy (AFM) on RBCs. These investigations demonstrated visible morphological changes upon chemically induced oxidative damage (using hydrogen peroxide, diamide, primaquine bisphosphate and cumene hydroperoxide). Our results provide previously unavailable observations on remarkable changes in red cell cytoskeletal architecture and membrane stiffness due to oxidative damage. Furthermore, we also demonstrate that a pathogen that infects human blood cells, Plasmodium falciparum was unable to penetrate through the oxidant-exposed RBCs that have damaged cytoskeleton and stiffer membranes. This indicates the importance of bio-physical factors pertinent to aged RBCs and it's relevance to malaria infectivity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Suberic acid bis(3-sulfo-N-hydroxysuccinimide ester) sodium salt, ≥95% (H-NMR), powder
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 50% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 70% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 25% in H2O, specially purified for use as an electron microscopy fixative
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
RPMI-1640 Medium, With L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Diamide
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, 99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, Vetec, reagent grade, 98%
Sigma-Aldrich
(3-Aminopropyl)triethoxysilane, ≥98.0%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O