Skip to Content
Merck
CN
  • Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner.

Transcriptional Repressor TrmBL2 from Thermococcus kodakarensis Forms Filamentous Nucleoprotein Structures and Competes with Histones for DNA Binding in a Salt- and DNA Supercoiling-dependent Manner.

The Journal of biological chemistry (2015-05-02)
Artem K Efremov, Yuanyuan Qu, Hugo Maruyama, Ci J Lim, Kunio Takeyasu, Jie Yan
ABSTRACT

Architectural DNA proteins play important roles in the chromosomal DNA organization and global gene regulation in living cells. However, physiological functions of some DNA-binding proteins from archaea remain unclear. Recently, several abundant DNA-architectural proteins including histones, Alba, and TrmBL2 have been identified in model euryarchaeon Thermococcus kodakarensis. Although histones and Alba proteins have been previously characterized, the DNA binding properties of TrmBL2 and its interplay with the other major architectural proteins in the chromosomal DNA organization and gene transcription regulation remain largely unexplored. Here, we report single-DNA studies showing that at low ionic strength (<300 mM KCl), TrmBL2 binds to DNA largely in non-sequence-specific manner with positive cooperativity, resulting in formation of stiff nucleoprotein filamentous patches, whereas at high ionic strength (>300 mM KCl) TrmBL2 switches to more sequence-specific interaction, suggesting the presence of high affinity TrmBL2-filament nucleation sites. Furthermore, in vitro assays indicate the existence of DNA binding competition between TrmBL2 and archaeal histones B from T. kodakarensis, which can be strongly modulated by DNA supercoiling and ionic strength of surrounding solution. Overall, these results advance our understanding of TrmBL2 DNA binding properties and provide important insights into potential functions of architectural proteins in nucleoid organization and gene regulation in T. kodakarensis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Magnesium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 0.85%
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Magnesium chloride solution, Molecular Biology, 1.00 M±0.01 M
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~0.025 M in H2O
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, 2 M in H2O
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Magnesium chloride, powder, <200 μm
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Magnesium chloride, ≥98%
Sigma-Aldrich
Magnesium chloride, suitable for insect cell culture, BioReagent, ≥97.0%