Skip to Content
Merck
CN
  • Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro.

Toxicity of 11 Metal Oxide Nanoparticles to Three Mammalian Cell Types In Vitro.

Current topics in medicinal chemistry (2015-05-12)
Angela Ivask, Tiina Titma, Meeri Visnapuu, Heiki Vija, Aleksandr Kakinen, Mariliis Sihtmae, Suman Pokhrel, Lutz Madler, Margit Heinlaan, Vambola Kisand, Ruth Shimmo, Anne Kahru
ABSTRACT

The knowledge on potential harmful effects of metallic nanomaterials lags behind their increased use in consumer products and therefore, the safety data on various nanomaterials applicable for risk assessment are urgently needed. In this study, 11 metal oxide nanoparticles (MeOx NPs) prepared using flame pyrolysis method were analyzed for their toxicity against human alveolar epithelial cells A549, human epithelial colorectal cells Caco2 and murine fibroblast cell line Balb/c 3T3. The cell lines were exposed for 24 h to suspensions of 3-100 μg/mL MeOx NPs and cellular viability was evaluated using. Neutral Red Uptake (NRU) assay. In parallel to NPs, toxicity of soluble salts of respective metals was analyzed, to reveal the possible cellular effects of metal ions shedding from the NPs. The potency of MeOx to produce reactive oxygen species was evaluated in the cell-free assay. The used three cell lines showed comparable toxicity responses to NPs and their metal ion counterparts in the current test setting. Six MeOx NPs (Al2O3, Fe3O4, MgO, SiO2, TiO2, WO3) did not show toxic effects below 100 µg/mL. For five MeOx NPs, the averaged 24 h IC50 values for the three mammalian cell lines were 16.4 µg/mL for CuO, 22.4 µg/mL for ZnO, 57.3 µg/mL for Sb2O3, 132.3 µg/mL for Mn3O4 and 129 µg/mL for Co3O4. Comparison of the dissolution level of MeOx and the toxicity of soluble salts allowed to conclude that the toxicity of CuO, ZnO and Sb2O3 NPs was driven by release of metal ions. The toxic effects of Mn3O4 and Co3O4 could be attributed to the ROS-inducing ability of these NPs. All the NPs were internalized by the cells according to light microscopy studies but also proven by TEM, and internalization of Co3O4 NPs seemed to be most prominent in this aspect. In conclusion, this work provides valuable toxicological data for a library of 11 MeOx NPs. Combining the knowledge on toxic or non-toxic nature of nanomaterials may be used for safe-by-design approach.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Glutaraldehyde solution, 50 wt. % in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Tetraethyl orthosilicate, ≥99.0% (GC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~0.025 M in H2O
Sigma-Aldrich
Acetic acid, suitable for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, 2 M in H2O
Sigma-Aldrich
(±)-Propylene oxide, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Tetraethyl orthosilicate, reagent grade, 98%
Sigma-Aldrich
Tetraethyl orthosilicate, 99.999% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Magnesium chloride solution, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Glutaric dialdehyde solution, 50 wt. % in H2O, FCC
Sigma-Aldrich
2,4,6-Tris(dimethylaminomethyl)phenol, 95%
Sigma-Aldrich
(±)-Propylene oxide, ReagentPlus®, ≥99%
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Magnesium chloride solution, PCR Reagent, 25 mM MgCI2 solution for PCR
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Magnesium chloride solution, Molecular Biology, 1.00 M±0.01 M
Sigma-Aldrich
Glutaraldehyde solution, Grade I, 8% in H2O, specially purified for use as an electron microscopy fixative or other sophisticated use
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Glutaraldehyde solution, 50% in H2O, suitable for photographic applications
Sigma-Aldrich
Glutaraldehyde solution, Grade II, 25% in H2O