InChI key
KDYFGRWQOYBRFD-UHFFFAOYSA-N
InChI
1S/C4H6O4/c5-3(6)1-2-4(7)8/h1-2H2,(H,5,6)(H,7,8)
SMILES string
OC(=O)CCC(O)=O
assay
99%
bp
235 °C (lit.)
正在寻找类似产品? 访问 产品对比指南
signalword
Danger
hcodes
Hazard Classifications
Eye Dam. 1
存储类别
11 - Combustible Solids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
法规信息
新产品
此项目有
James H Marden et al.
Evolution; international journal of organic evolution, 67(4), 1105-1115 (2013-04-05)
Oxygen conductance to the tissues determines aerobic metabolic performance in most eukaryotes but has cost/benefit tradeoffs. Here we examine in lowland populations of a butterfly a genetic polymorphism affecting oxygen conductance via the hypoxia-inducible factor (HIF) pathway, which senses intracellular
José Manuel Otero et al.
PloS one, 8(1), e54144-e54144 (2013-01-26)
Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after
Susan Jahn et al.
Biochimica et biophysica acta, 1833(12), 2879-2889 (2013-07-28)
To investigate a possible role of the nitrogen-PTS (PTS(Ntr)) in controlling carbon metabolism, we determined the growth of Escherichia coli LJ110 and of isogenic derivatives, mutated in components of the PTS(Ntr), on different carbon sources. The PTS(Ntr) is a set
G M Tannahill et al.
Nature, 496(7444), 238-242 (2013-03-29)
Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map
Yun Chen et al.
Current opinion in biotechnology, 24(6), 965-972 (2013-04-02)
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持