InChI key
BASFCYQUMIYNBI-UHFFFAOYSA-N
InChI
1S/Pt
SMILES string
[Pt]
assay
99.99% trace metals basis
form
wire
resistivity
10.6 μΩ-cm, 20°C
diam.
1.0 mm
bp
3827 °C (lit.)
mp
1772 °C (lit.)
density
21.45 g/cm3 (lit.)
Preparation Note
350mg=2cm;3.5g=20cm
存储类别
13 - Non Combustible Solids
wgk
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
Wei Sun et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 1907-1913 (2013-03-19)
In this paper a platinum (Pt) nanoparticle decorated graphene (GR) nanosheet was synthesized and used for the investigation on direct electrochemistry of myoglobin (Mb). By integrating GR-Pt nanocomposite with Mb on the surface of carbon ionic liquid electrode (CILE), a
Muhammad Rashid et al.
Journal of nanoscience and nanotechnology, 13(5), 3627-3633 (2013-07-19)
Platinum nanoparticles (Pt NPs) were chemically deposited on a Nafion polymer electrolyte membrane by the impregnation-reduction (I-R) procedure to prepare an active electrode for solid electrochemical sensors. Various analysis methods such as SEM, EDX, XRD and cyclic voltammogram (CV) measurements
Yao-Hsuan Tseng et al.
Biochimica et biophysica acta, 1830(6), 3787-3795 (2013-04-02)
Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive
Mohammad Shamsuddin Ahmed et al.
Journal of nanoscience and nanotechnology, 13(1), 306-314 (2013-05-08)
Multi-walled carbon nanotube grafted Pt nanoparticles via nitrogen atom (MWCNT-N-Pt) has chemically synthesized and characterized as an efficient oxygen reduction reaction (ORR) catalysts. Structural and morphological properties of the electrocatalyst have characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy
Tao Xiong et al.
Journal of biomedical nanotechnology, 9(2), 274-280 (2013-05-01)
Noninvasive molecular fluorescence imaging in vivo which combines Optical imaging with genetic marker technology can real time monitor the development of tumor, through the use of human adenoid cystic carcinoma cell (ACC-M) and lung carcinoma cells SPC-A1 were thansfected by
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持