产品名称
铟, foil, thickness 0.5 mm, 99.99% trace metals basis
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
InChI
1S/In
SMILES string
[In]
vapor pressure
<0.01 mmHg ( 25 °C)
assay
99.99% trace metals basis
form
foil
resistivity
8.37 μΩ-cm
thickness
0.5 mm
mp
156.6 °C (lit.)
density
7.3 g/mL at 25 °C (lit.)
Quality Level
正在寻找类似产品? 访问 产品对比指南
Preparation Note
9.2g = 50×50mm;36.8g = 100×100mm
signalword
Danger
hcodes
Hazard Classifications
STOT RE 1 Inhalation
target_organs
Lungs
存储类别
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
法规信息
新产品
此项目有
G W Shu et al.
Physical chemistry chemical physics : PCCP, 15(10), 3618-3622 (2013-02-06)
Nonradiative energy transfer from an InGaN quantum well to Ag nanoparticles is unambiguously demonstrated by the time-resolved photoluminescence. The distance dependence of the energy transfer rate is found to be proportional to 1/d(3), in good agreement with the prediction of
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Han-Youl Ryu et al.
Optics express, 21 Suppl 1, A190-A200 (2013-02-15)
We investigate the dependence of various efficiencies in GaN-based vertical blue light-emitting diode (LED) structures on the thickness and doping concentration of the n-GaN layer by using numerical simulations. The electrical efficiency (EE) and the internal quantum efficiency (IQE) are
Annick Bay et al.
Optics express, 21 Suppl 1, A179-A189 (2013-02-15)
In this paper the design, fabrication and characterization of a bioinspired overlayer deposited on a GaN LED is described. The purpose of this overlayer is to improve light extraction into air from the diode's high refractive-index active material. The layer
Ray-Hua Horng et al.
Optics express, 21 Suppl 1, A1-A6 (2013-02-15)
A wing-type imbedded electrodes was introduced into the lateral light emitting diode configuration (WTIE-LEDs) to reduce the effect of light shading of electrode in conventional sapphire-based LEDs (CSB-LEDs). The WTIE-LEDs with double-side roughened surface structures not only can eliminate the
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持