蒸汽压
<0.01 mmHg ( 25 °C)
质量水平
方案
99.99% trace metals basis
表单
foil
电阻率
8.37 μΩ-cm
厚度
0.5 mm
mp
156.6 °C (lit.)
密度
7.3 g/mL at 25 °C (lit.)
SMILES字符串
[In]
InChI
1S/In
InChI key
APFVFJFRJDLVQX-UHFFFAOYSA-N
正在寻找类似产品? 访问 产品对比指南
制备说明
9.2g = 50×50mm;36.8g = 100×100mm
警示用语:
Danger
危险声明
危险分类
STOT RE 1 Inhalation
靶器官
Lungs
储存分类代码
6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects
WGK
WGK 1
闪点(°F)
Not applicable
闪点(°C)
Not applicable
个人防护装备
dust mask type N95 (US), Eyeshields, Gloves
法规信息
新产品
此项目有
Vahid A Akhavan et al.
ChemSusChem, 6(3), 481-486 (2013-02-13)
Thin-film photovoltaic devices (PVs) were prepared by selenization using oleylamine-capped Cu(In,Ga)Se2 (CIGS) nanocrystals sintered at a high temperature (>500 °C) under Se vapor. The device performance varied significantly with [Ga]/[In+Ga] content in the nanocrystals. The highest power conversion efficiency (PCE) observed
Optical polarization characteristics of semipolar (3031) and (3031) InGaN/GaN light-emitting diodes.
Yuji Zhao et al.
Optics express, 21 Suppl 1, A53-A59 (2013-02-15)
Linear polarized electroluminescence was investigated for semipolar (3031) and (3031) InGaN light-emitting diodes (LEDs) with various indium compositions. A high degree of optical polarization was observed for devices on both planes, ranging from 0.37 at 438 nm to 0.79 at
Hwa Sub Oh et al.
Journal of nanoscience and nanotechnology, 13(1), 564-567 (2013-05-08)
We investigate Ga0.33In0.67P quantum dot structures appropriate for special lighting applications in terms of structural and optical behaviors. The Ga0.33In0.67P materials form from 2-dimentional to 3-dimensional dots as the nominal growth thickness increases from 0.5 nm to 6.0 nm, indicating
G W Shu et al.
Physical chemistry chemical physics : PCCP, 15(10), 3618-3622 (2013-02-06)
Nonradiative energy transfer from an InGaN quantum well to Ag nanoparticles is unambiguously demonstrated by the time-resolved photoluminescence. The distance dependence of the energy transfer rate is found to be proportional to 1/d(3), in good agreement with the prediction of
Zi-Hui Zhang et al.
Optics express, 21(4), 4958-4969 (2013-03-14)
This work reports both experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current spreading layers in p-GaN. Each thin n-GaN layer sandwiched
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持