InChI key
WUAPFZMCVAUBPE-UHFFFAOYSA-N
InChI
1S/Re
SMILES string
[ReH]
assay
99.98% trace metals basis
form
foil
description
19.3 μΩ-cm, 20°C
thickness
1.0 mm
bp
5596 °C (lit.), 5627 °C (lit.)
mp
3180 °C (lit.)
density
21.02 g/cm3 (lit.)
正在寻找类似产品? 访问 产品对比指南
Preparation Note
13g = 25×25mm
存储类别
13 - Non Combustible Solids
wgk
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type P3 (EN 143) respirator cartridges
法规信息
新产品
此项目有
Cinzia Spagnul et al.
Journal of inorganic biochemistry, 122, 57-65 (2013-03-12)
The synthesis and characterization of two novel water soluble porphyrins with three meso pyridyl rings and one peripheral chelator - either a diethylenetriamine unit (4) or a bipyridyl fragment (8) - for binding to the {(99m)Tc(CO)3}(+) moiety is reported. In
Jan Dietrich et al.
Inorganic chemistry, 52(3), 1248-1264 (2013-01-15)
New cationic metallo ligands L1-L3 based on bis(terpyridine) ruthenium(II) complexes decorated with differently substituted 2,2'-bipyridines attached via amide groups (5-NHCO-bpy, 4-CONH-bpy, 5-CONH-bpy) were prepared. Coordination of Re(I)Cl(CO)(3) fragments to the bpy unit gives the corresponding bimetallic Ru~Re complexes 1-3. Hydrogen
Yanfeng Jiang et al.
Journal of the American Chemical Society, 135(10), 4088-4102 (2013-02-07)
Diiodo Re(I) complexes [ReI2(NO)(PR3)2(L)] (3, L = H2O; 4 , L = H2; R = iPr a, Cy b) were prepared and found to exhibit in the presence of "hydrosilane/B(C6F5)3" co-catalytic systems excellent activities and longevities in the hydrogenation of
Shalina C Bottorff et al.
Inorganic chemistry, 52(6), 2939-2950 (2013-03-06)
The viability of the Huisgen cycloaddition reaction for clickable radiopharmaceutical probes was explored with an alkyne-functionalized 2-[(pyridin-2-ylmethyl)amino]acetic acid (PMAA) ligand system, 3, and fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc). Two synthetic strategies, (1) click, then chelate and (2) chelate, then click
Ties J Korstanje et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 19(39), 13224-13234 (2013-08-16)
Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持