登录 查看组织和合同定价。
选择尺寸
关于此项目
线性分子式:
[CH3(CH2)5]3P[OCO(CH2)8CH3](CH2)13CH3
化学文摘社编号:
分子量:
655.11
NACRES:
NA.22
PubChem Substance ID:
UNSPSC Code:
12352100
MDL number:
Assay:
≥95.0% (NMR)
Technique(s):
NMR: suitable
产品名称
三己基十四烷基癸酸膦, ≥95.0% (NMR)
InChI key
HQIPXXNWLGIFAY-UHFFFAOYSA-M
SMILES string
CCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC[P+](CCCCCC)(CCCCCC)CCCCCC
InChI
1S/C32H68P.C10H20O2/c1-5-9-13-17-18-19-20-21-22-23-24-28-32-33(29-25-14-10-6-2,30-26-15-11-7-3)31-27-16-12-8-4;1-2-3-4-5-6-7-8-9-10(11)12/h5-32H2,1-4H3;2-9H2,1H3,(H,11,12)/q+1;/p-1
assay
≥95.0% (NMR)
technique(s)
NMR: suitable
functional group
phosphine
Quality Level
Application
Trihexyltetradecylphosphonium decanoate can be used as a demulsifying agent due to its unique solubility and surface-active properties. It is also used as a catalyst in Henry nitroaldol reactions.
General description
Trihexyltetradecylphosphonium decanoate is an ionic liquid that is used as a convenient and efficient solvent for a wide range of chemical reactions due to its unique properties such as its high thermal stability and low volatility, which make it useful in a variety of organic synthesis applications.
signalword
Danger
hcodes
Hazard Classifications
Skin Corr. 1B
存储类别
8A - Combustible corrosive hazardous materials
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges
Mohammad Abdul Sattar et al.
ACS omega, 5(33), 21191-21202 (2020-09-03)
Intermolecular interactions between the constituents of a polymer nanocomposite at the polymer-particle interface strongly affect the segmental mobility of polymer chains, correlated with their glass transition behavior, and are responsible for the improved dynamical viscoelastic properties. In this work, we
Annaly Cruz Sotolongo et al.
Talanta, 210, 120614-120614 (2020-01-29)
A preconcentration method based on a novel hybrid sorption nanomaterial consisting in a 3D graphene-Ni foam functionalized with an ionic liquid (IL) was developed for Hg species determination. The capability of different phosphonium-ionic liquids (PILs) to functionalize the hybrid material
Sarah F R Taylor et al.
Physical chemistry chemical physics : PCCP, 19(22), 14306-14318 (2017-05-26)
This study reports on understanding the formation of bubbles in ionic liquids (ILs), with a view to utilising ILs more efficiently in gas capture processes. In particular, the impact of the IL structure on the bubble sizes obtained has been
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持