Merck
CN

655201

Sigma-Aldrich

聚乙撑二氧噻吩-聚 苯乙烯磺酸盐

greener alternative

3.0-4.0% in H2O, high-conductivity grade

登录查看公司和协议定价

别名:
PEDOT:PSS, 聚(2,3-二氢噻吩并-1,4-二恶英)-聚(苯乙烯磺酸盐)
MDL编号:
NACRES:
NA.23

等级

high-conductivity grade

环保替代产品特性

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

浓度

3.0-4.0% in H2O

电阻

1500 Ω/sq, 4 point probe measurement of dried coating based on initial 6μm wet thickness.
500 Ω/sq, 4 point probe measurement of dried coating based on initial 18μm wet thickness.

pH值(酸碱度)

1.5-2.5 (25 °C, dried coatings)

电导率

>200 S/cm

粘度

10-30 cP(20 °C)

密度

1.011 g/cm3 (dried coatings)

环保替代产品分类

储存温度

2-8°C

正在寻找类似产品? Visit 产品对比指南

一般描述

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is an organic semiconductor prepared by doping cationic poly(3,4-ethylenedioxythiophene) and poly(4-styrenesulfonate) anion. Its high electrical conductivity and good oxidation resistance make it suitable for electromagnetic shielding and noise suppression. PEDOT:PSS based polymeric films have a high transparency throughout the visible light spectrum and even in near IR and near UV regions, with virtually 100% absorption from 900-2000 nm. PEDOT provides the conduction properties and PSS forms a hydrated colloidal solution.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

应用

Electrical conductivity measurements herewith reported were on a film deposited by spin-coating on a clean glass, then dried (130 °C for 15 minutes on a hotplate). The layer thickness was determined by scratching the layer and measuring the profile/height of the scratch by a stylus profilometer. Electrodes for the measurement were by evaporating metal contacts (four-point probes).
PEDOT:PSS is an intrinsically conductive polymer (ICP) that can be coated on various substrates and nanostructures like fullerenes (C60) to form composites with high electrochemical properties for applications like low-cost printed electronics, optoelectronics, and polymeric solar cells. It can be used as a conductive hydrogel with polyethylene glycol-diacrylate (PEG-DA) for potential applications in tissue engineering. PEDOT:PSS also finds use in other organic electronic applications like organic thin film transistors (OTFTs) and dye sensitized solar cells (DSSCs).
Ready-to-use high conductivity coating formulation.
从900nm到2000nm几乎100%吸收。从400nm到800nm无最大吸收。 导电聚合物混合。

包装

塑料瓶包装

象形图

Corrosion

警示用语:

Danger

危险声明

危险分类

Eye Dam. 1 - Skin Corr. 1

储存分类代码

8B - Non-combustible, corrosive hazardous materials

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter

法规信息

新产品

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

为方便起见,与您过往购买产品相关的文件已保存在文档库中。

访问文档库

难以找到您所需的产品或批次号码?

在网站页面上,产品编号会附带包装尺寸/数量一起显示(例如:T1503-25G)。请确保 在“产品编号”字段中仅输入产品编号 (示例: T1503).

示例

T1503
货号
-
25G
包装规格/数量

其它示例:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

输入内容 1.000309185)

遇到问题?欢迎随时联系我们技术服务 寻求帮助

批号可以在产品标签上"批“ (Lot或Batch)字后面找到。

Aldrich 产品

  • 如果您查询到的批号为 TO09019TO 等,请输入去除前两位字母的批号:09019TO。

  • 如果您查询到的批号含有填充代码(例如05427ES-021),请输入去除填充代码-021的批号:05427ES。

  • 如果您查询到的批号含有填充代码(例如 STBB0728K9),请输入去除填充代码K9的批号:STBB0728。

未找到您寻找的产品?

部分情况下,可能未在线提供COA。如果搜索不到COA,可在线索取。

索取COA

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. What is the ratio of PEDOT to PSS in Product 655201?

    According to our supplier, the ratio of PEDOT to PSS is proprierary information.

  4. How should Product 655201, PEDOT/PSS, be stored?

    We recommend that you store this product at 2-8°C, which is in accordance with our MSDS.

  5. What is the miniumum conductivity for Product 655201, PEDOT/PSS?

    The minimum conductivity is 150 S/cm.

  6. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  7. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  8. Is this PEDOT:PSS, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), product p-doped or n-doped?

    This PEDOT:PSS product is based on hole-doped or P-type polymers. PEDOT can be n-doped, but the materials are too unstable to be of any commercial value.

  9. For product 655201, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), what is the relationship between film thickness and spin coating speed?

    Please consult this graph showing the spin coating curve for product 655201, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate).

  10. What is the temperature stability of this poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, product?

    Deposited poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, films can easily withstand temperatures in excess of 200°C for short duration and around 70°C in continuous service.  The aqueous dispersions of PEDOT:PSS, however, can be damaged by heating above 50°C for a prolonged period.

  11. How do I test the coductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS?

    Conductivity measurements should be performed on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT/PSS, films deposited on flat substrates.  This dispersion should be deposited as a thin and homogeneous layer on a flat substrate using deposition techniques, such as spin-coating or doctor blading.  The layer thickness can be determined by scratching the film off the substrate in places with a razor blade and scanning the stylus of a mechanical or optical profilometer across the scratched region(s). The sheet resistivity can then be measured with conventional four-point probes.

  12. Can PEDOT:PSS, Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), coatings be etched?

    Yes, applied PEDOT:PSS films can be patterned by laser ablation.

  13. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

New Conducting and Semiconducting Polymers for Organic Photovoltaics.
Sapp S and Luebben S
MRS Online Proceedings Library, 1270(4), 261-266 (2010)
Fine patterning of glycerol-doped PEDOT: PSS on hydrophobic PVP dielectric with ink jet for source and drain electrode of OTFTs
Lee M, et al.
Organic Electronics, 11(5}, 854-859 (2010)
Mechanically robust, photopatternable conductive hydrogel composites.
Pal R, et al.
Reactive and Functional Polymers, 120(5), 66-73 (2017)
Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO2 electrode and PEDOT: PSS counter electrode.
Balraju P, et al.
Synthetic Metals, 159(13), 1325-1331 (2009)
Junhwan Jang et al.
Nanomaterials (Basel, Switzerland), 10(12) (2020-12-03)
Graphene oxide (GO)-cysteamine-Ag nanoparticles (GCA)-silver nanowire (AgNW) fabricated by depositing GCA over sprayed AgNWs on PET films were proposed for transparent and flexible electrodes, and their optical, electrical, and mechanical properties were analyzed by energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy

商品

In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.

Conducting polymers such as polyaniline, polythiophene and polyfluorenes are now much in the spotlight for their applications in organic electronics and optoelectronics.

Advancements in bioelectronics, incorporating self-healing materials for wearable devices, and measuring bioelectric signals to assess physiological parameters.

Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门