跳转至内容
Merck
CN

725684

聚乙二醇二甲基丙烯酸酯

average MN 10,000, cross-linking reagent polymerization reactions, methacrylate, ≤1, 500 ppm MEHQ as inhibitor (may contain)

别名:

PEG 二甲基丙烯酸酯

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
化学文摘社编号:
NACRES:
NA.23
UNSPSC Code:
12162002
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

聚乙二醇二甲基丙烯酸酯, average Mn 10,000, contains MEHQ as inhibitor

InChI key

STVZJERGLQHEKB-UHFFFAOYSA-N

SMILES string

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

form

powder

mol wt

average Mn 10,000

contains

MEHQ as inhibitor
≤1,500 ppm MEHQ as inhibitor (may contain)

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

bp

>200 °C/2 mmHg (lit.)

transition temp

Tm 56-61 °C

Mw/Mn

≤1.1

Ω-end

methacrylate

α-end

methacrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

−20°C

正在寻找类似产品? 访问 产品对比指南

Preparation Note

合成反应初始 MEHQ 浓度不超过 1,500ppm

存储类别

11 - Combustible Solids

wgk

WGK 1


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Kenneth C Koehler et al.
Biomaterials, 34(16), 4150-4158 (2013-03-08)
We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion
Kwanghun Chung et al.
Nature methods, 10(6), 508-513 (2013-06-01)
With potential relevance for brain-mapping work, hydrogel-based structures can now be built from within biological tissue to allow subsequent removal of lipids without mechanical disassembly of the tissue. This process creates a tissue-hydrogel hybrid that is physically stable, that preserves
[Manufacture of hydrogel-based phantoms of biological tissues and research into their optical properties].
L P Safonova et al.
Meditsinskaia tekhnika, (1)(1), 1-6 (2013-06-22)
Cheng Wang et al.
Journal of biomedical nanotechnology, 9(3), 357-366 (2013-04-30)
In this paper, two nanoscale preparations were described for docetaxel encapsulation using poly(epsilon-caprolactone)poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) copolymer as carrier for treating malignant tumor. The first formulation was docetaxel-loaded PCEC micelle (D-M), which was characterized by XRD, TEM and Malvern laser particle
Craig Halberstadt et al.
Methods in molecular biology (Clifton, N.J.), 1001, 279-287 (2013-03-16)
Delivery of cells to organs has primarily relied on formulating the cells in a nonviscous liquid carrier. We have developed a methodology to isolate selected renal cells (SRC) that have provided functional stability to damaged kidneys in preclinical models (Kelley

商品

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Hydrogel-based biomaterials for cell delivery and tissue regeneration applications are discussed.

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持