跳转至内容
Merck
CN

774022

氧化钇(III)

sputtering target, diam. × thickness 2.00 in. × 0.25 in., 99.99% trace metals basis

别名:

氧化钇

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
Y2O3
化学文摘社编号:
分子量:
225.81
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352302
EC Number:
215-233-5
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

InChI key

SIWVEOZUMHYXCS-UHFFFAOYSA-N

InChI

1S/3O.2Y

SMILES string

O=[Y]O[Y]=O

assay

99.99% trace metals basis

form

powder

reaction suitability

core: yttrium

diam. × thickness

2.00 in. × 0.25 in.

mp

2410 °C (lit.)

density

5.01 g/mL at 25 °C (lit.)

正在寻找类似产品? 访问 产品对比指南

Application

Solid Oxide Fuel cells operating at temperatures below 800 C (also known as intermediate temperature solid oxide fuel cell, IT-SOFC) are currently the topic of much research and development owing to the high degradation rates and materials costs incurred for SOFC operating at temperatures above 900 C. Thin films of electrode and electrolyte layers is one of the ways to achieve high performances in IT-SOFC.
Yttrium oxide sputtering target can be used for physical vapor deposition of thin films of yttria stabilized zirconia layers for IT-SOFC. Yttrium containing films are used as thermal barrier and protective coatings in thermoelectric devices, rare earth doped yttrium oxide films are studied for phosphor applications.

存储类别

13 - Non Combustible Solids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Jiangli Wang et al.
ChemSusChem, 5(7), 1307-1312 (2012-04-03)
Y(2)O(3):Er(3+) nanorods are synthesized by means of a hydrothermal method and then introduced into a TiO(2) electrode in a dye-sensitized solar cell (DSSC). Y(2)O(3):Er(3+) improves infrared light harvest via up-conversion luminescence and increases the photocurrent of the DSSC. The rare
Ian N Stanton et al.
Dalton transactions (Cambridge, England : 2003), 41(38), 11576-11578 (2012-09-04)
We report an upconverting nanomaterial composition, [Y(2)O(3); Yb (2%), Er (1%)], that converts both X-ray and high-fluence NIR irradiation to visible light. This composition is compared to a higher Yb(3+) doped composition, [Y(2)O(3); Yb (10%), Er (1%)], that displays diminished
Sjoerd A Veldhuis et al.
Langmuir : the ACS journal of surfaces and colloids, 28(42), 15111-15117 (2012-10-04)
Typical surface areas of 5 × 5 mm(2) were patterned with high-aspect-ratio micrometer- and submicrometer-sized structures of yttria-stabilized zirconia using a combination of micromolding in capillaries and sol-gel chemistry. The influence of precursor solution concentration and mold geometry on the
Timur Sh Atabaev et al.
Journal of biomedical materials research. Part A, 100(9), 2287-2294 (2012-04-14)
Increased demand of environment protection encouraged scientists to design products and processes that minimize the use and generation of hazardous substances. This work presents comprehensive result of large-scale fabrication and investigation of red-to-green tunable submicron spherical yttria particles codoped with
Guangqing Guo et al.
Dental materials : official publication of the Academy of Dental Materials, 28(4), 360-368 (2011-12-14)
To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing

商品

Nanomaterials are considered a route to the innovations required for large-scale implementation of renewable energy technologies in society to make our life sustainable.

Nanocomposite Coatings with Tunable Properties Prepared by Atomic Layer Deposition

Spintronics offer breakthroughs over conventional memory/logic devices with lower power, leakage, saturation, and complexity.

The properties of many devices are limited by the intrinsic properties of the materials that compose them.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持