跳转至内容
Merck
CN

797774

Sigma-Aldrich

Graphene nanoribbons

登录查看公司和协议定价

关于此项目

线性分子式:
C
分子量:
12.01
EC 号:
UNSPSC代码:
12352103
NACRES:
NA.23
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

方案

≥90.0% carbon basis (TGA)

表单

powder

长度 × 宽度

2-15 μm × 40-250 nm

密度

2.2745 g/mL (He gas method)

堆积密度

0.0970 g/mL (Mercury Porosimetry)

正在寻找类似产品? 访问 产品对比指南

一般描述

Produced by unzipping multi-walled carbon nanotubes by potassium intercalation.

应用

  • Composites.
  • Conductive inks.
  • Electrodes for LiB.
  • Energy storage & harvesting applications.
  • Bio-medical applications.
  • Preferred dispersing organic solvents: pyrrolidones and chlorinated solvents.
  • Less preferred dispersing organic solvents: cyclohexanone and γ-butyrolactone.
  • Aqueous dispersions are possible at 0.1mg/mL with triton-X-100, sodium cholate and deoxycholate and cellulose-based surfactants.

分析说明

Raman Spectroscopic Data:
ID/IG = 0.65±0.07
I2D/IG = 0.74±0.03
2D FWHM = 63 cm-1

法律信息

Graphene Nanoribbon Composites and Methods of Making the Same, WO/2012/112435 A1.

象形图

Health hazard

警示用语:

Danger

危险声明

危险分类

Carc. 2 - Repr. 2 - STOT RE 1 Inhalation

靶器官

Lungs

储存分类代码

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

nwg


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Dmitry V Kosynkin et al.
ACS nano, 5(2), 968-974 (2011-01-06)
Here we demonstrate that graphene nanoribbons (GNRs) free of oxidized surfaces can be prepared in large batches and 100% yield by splitting multiwalled carbon nanotubes (MWCNTs) with potassium vapor. If desired, exfoliation is attainable in a subsequent step using chlorosulfonic
Lei Li et al.
ACS applied materials & interfaces, 5(14), 6622-6627 (2013-06-25)
A facile and cost-effective approach to the fabrication of a nanocomposite material of polyaniline (PANI) and graphene nanoribbons (GNRs) has been developed. The morphology of the composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron microscopy, and
Bostjan Genorio et al.
ACS nano, 6(5), 4231-4240 (2012-04-04)
A cost-effective and potentially industrially scalable, in situ functionalization procedure for preparation of soluble graphene nanoribbon (GNRs) from commercially available carbon nanotubes is presented. The physical characteristics of the functionalized product were determined using SEM, evolved gas analysis, X-ray diffraction
Lei Li et al.
Advanced materials (Deerfield Beach, Fla.), 25(43), 6298-6302 (2013-09-03)
A facile and cost-effective approach for the fabrication of a hierarchical nanocomposite material of graphene-wrapped MnO2 -graphene nanoribbons (GMG) is developed. The resulting composite has a high specific capacity and an excellent cycling stability owing to the synergistic combination of
Changsheng Xiang et al.
ACS nano, 7(11), 10380-10386 (2013-10-10)
A thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was

商品

Graphene is a unique two-dimensional (2D) structure of monolayer carbon atoms packed into a dense honeycomb crystal that has attracted great interest due to its diverse and fascinating properties.

Since its discovery little more than a decade ago,1 the two-dimensional (2D) allotrope of carbon—graphene—has been the subject of intense multidisciplinary research efforts.

Graphene's unique properties spark interdisciplinary interest; its honeycomb structure offers electrical, optical, and mechanical marvels.

自从十多年前被发现以来,碳-石墨烯的二维(2D)同素异形体一直是密集的多学科研究工作的主题。

查看所有结果

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持