跳转至内容
Merck
CN

907642

Cuprous thiocyanate

greener alternative

35 mg/mL in diethyl sulfide

别名:

Copper thiocyanate perovskite hole transport material, Copper(I) thiocyanate perovskite hole transport material, Thiocyanic acid in diethyl sulfide

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
CuSCN
UNSPSC Code:
12352101
NACRES:
NA.23
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

SMILES string

[Cu]SC#N

InChI

1S/CHNS.Cu/c2-1-3;/h3H;/q;+1/p-1

InChI key

PDZKZMQQDCHTNF-UHFFFAOYSA-M

form

liquid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

greener alternative category

General description

We are committed to bringing you Greener Alternative Products,which adhere to one or more of The 12 Principles of Greener Chemistry. This product is an enabling product used as a Hole Transport Material for high-performance solar cells and thus has been enhanced for energy efficiency. Click here for more information.

Application

Layers of CuSCN exhibit high hole mobility, high thermal stability, and exceptional optical transparency across the UV-Vis/NIR spectrum. CuSCN finds application as an alternative to organic hole transport materials such as PEDOT:PSS and Spiro-MeOTAD in perovskite-based solar cells (PSCs). Photovoltaic conversion efficiencies of >20% have been reported in PSCs with CuSCN [5]. In addition, compared to Spiro-OMeTAD the CuSCN-based PSCs have been shown to exhibit better thermal stability.

signalword

Danger

Hazard Classifications

Aquatic Acute 1 - Aquatic Chronic 1 - Eye Irrit. 2 - Flam. Liq. 2 - Skin Irrit. 2

存储类别

3 - Flammable liquids

wgk

WGK 3

flash_point_f

25.7 °F - closed cup

flash_point_c

-3.5 °C - closed cup

法规信息

危险化学品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

It looks like we've run into a problem, but you can still download Certificates of Analysis from our 文件 section.

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Planar perovskite solar cells employing copper(I) thiocyanate/N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine bilayer structure as hole transport layers
Tseng Z L ,et al.
Japanese Journal of Applied Physics, 57, 02CE07-02CE07 (2018)
Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
N Arora, et al.
Science, 358(6364), 768-771 (2017)
Pichaya Pattanasattayavong et al.
Chemical communications (Cambridge, England), 49(39), 4154-4156 (2012-12-12)
The optical, structural and charge transport properties of solution-processed films of copper(I) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ~20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics
High-Efficiency Organic Photovoltaic Cells Based on the Solution-Processable Hole Transporting Interlayer Copper Thiocyanate (CuSCN) as a Replacement for PEDOT:PSS
Gross N Y, et al.
Advanced Energy Materials, 5, 1401529-1401529 (2015)
Pichaya Pattanasattayavong et al.
Advanced materials (Deerfield Beach, Fla.), 25(10), 1504-1509 (2013-01-03)
The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持