方案
≥80%
表单
powder
颜色
dark gray
粒径
≤100 μm
正在寻找类似产品? 访问 产品对比指南
一般描述
Mxenes find extensive use in LiBs and rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries . This MXene precursor enables the potential of Ti3C2Tx Mxenes as anode , cathode or separator to boost battery life-cycle and efficiency.
应用
MAX phases are a family of ternary carbides and nitrides that share a similar layered hexagonal crystal structure.
Ti2AlC MAX phase exhibits high-temperature stability, thermal shock resistance, damage tolerance, crack-healing capability, good machinability, and exceptional oxidation resistance (immune to thermal cycling), and was widely used for high-temperature applications such as high-temperature heating elements, gas burner nozzles and industrial die inserts.
MAX phases are important precursors for synthesizing MXene, a highly conductive 2-dimentional nanomaterial. MXenes are produced by selective etching of the A element from the MAX phases. It combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. Ti2AlC MAX phase is one of the most used MAX phase for MXene (Ti2CTx).
Ti2AlC MAX phase exhibits high-temperature stability, thermal shock resistance, damage tolerance, crack-healing capability, good machinability, and exceptional oxidation resistance (immune to thermal cycling), and was widely used for high-temperature applications such as high-temperature heating elements, gas burner nozzles and industrial die inserts.
MAX phases are important precursors for synthesizing MXene, a highly conductive 2-dimentional nanomaterial. MXenes are produced by selective etching of the A element from the MAX phases. It combine the metallic conductivity of transition metal carbides with the hydrophilic nature of their hydroxyl or oxygen terminated surfaces. Ti2AlC MAX phase is one of the most used MAX phase for MXene (Ti2CTx).
储存分类代码
13 - Non Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
MXenes for advanced separator in rechargeable batteries
An, Yongling et. al.
Materials Today, 57, 146-179 (2022)
Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries
Xie, Yu et. al.
ACS Nano, 8, 9606?9615- 9606?9615 (2014)
MAX phases: bridging the gap between metals and ceramics.
Radovic M ,et al.
American Ceramic Society Bulletin, 92(3), 20-27 (2013)
MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization
Srimuk,Pattarachai
Journal of Materials Chemistry, 4, 18265-18271 (2016)
2D metal carbides and nitrides (MXenes) for energy storage.
Anasori B, et al.
Nature Reviews. Materials, 2(2), 16098-16098 (2017)
商品
Professors summarize recent 2D materials synthesis advancements and biosensing applications in various fields.
Optimizing the synthesis of high-quality 2D MXene flakes for 3D ink printing is essential to such technological developments as printable and flexible electronics.
Advanced technologies for energy conversion and storage aim to improve performance and reduce environmental impact.
Review on 1D vdWHs: Discusses materials, synthesis, optoelectronic applications, challenges, and future perspectives for 1D vdWH-based devices.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持