跳转至内容
Merck
CN

934828

六氟磷酸锂 溶液

greener alternative

in ethylene carbonate and ethyl methyl carbonate with vinylene carbonate additive, 1.0 M LiPF6 in EC/EMC=30/70 (w/w) + 1 wt.% VC, battery grade

别名:

1.0 M LiPF6 in EC/EMC=30/70 (w/w) + 1 wt.% VC

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
LiPF6
UNSPSC Code:
12352600
NACRES:
NA.21
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

六氟磷酸锂 溶液, in ethylene carbonate and ethyl methyl carbonate with vinylene carbonate additive, 1.0 M LiPF6 in EC/EMC=30/70 (w/w) + 1 wt.% VC, battery grade

InChI

1S/F6P.Li/c1-7(2,3,4,5)6;/q-1;+1

SMILES string

F[P-](F)(F)(F)(F)F.[Li+]

InChI key

AXPLOJNSKRXQPA-UHFFFAOYSA-N

grade

battery grade

description

Application: Battery Manufacturing

form

(clear liquid)

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

1.0 M (LiPF6)

impurities

≤100.0 ppm H2O
≤250.0 ppm KF

color

colorless to faint yellow

density

1.203 g/mL

application(s)

battery manufacturing

greener alternative category

Quality Level

正在寻找类似产品? 访问 产品对比指南

Application

Our battery-grade 1.0 M LiPF6 in EC/EMC=30/70 (w/w) with 1 wt.% VC electrolyte is optimized for safety, thermal stability, and performance for lithium-ion batteries. The 30/70 blend of EC/EMC combines the high dielectric constant of ethylene carbonate and the low viscosity of ethyl methyl carbonate to afford an electrolyte with a wide electrochemical stability window and excellent wetting. The vinylene carbonate additive helps to form a passivating solid-electrolyte interface (SEI), which improves the electrochemical performance at higher working temperature and resists thermal damage Our electrolyte is compatible with a wide range of cathode and anode materials, including graphite, lithium-metal, LFP, and NMCs making it ideal for use in many battery applications

General description

Our 1.0 M LiPF6 in EC/EMC=30/70 (w/w) with 1 wt.% VC is a battery-grade electrolyte designed for use in lithium-ion batteries. This electrolyte contains a 1.0 M concentration of lithium hexafluorophosphate in a mixture of ethylene carbonate and ethyl methyl carbonate with a vinylene carbonate additive. Our electrolyte is highly pure with carefully minimized impurities of water, acid, and metals. It is safely packaged in an aluminum bottle under inert, dry conditions.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Flam. Liq. 2 - Skin Corr. 1A - Skin Sens. 1 - STOT RE 1 Inhalation - STOT RE 2 Oral

target_organs

Bone,Teeth, Kidney

存储类别

3 - Flammable liquids

wgk

WGK 2

flash_point_f

69.8 °F

flash_point_c

21 °C

法规信息

新产品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Feng-Ni Jiang et al.
Advanced materials (Deerfield Beach, Fla.), 35(12), e2209114-e2209114 (2023-01-08)
Exploring advanced strategies in alleviating the thermal runaway of lithium-metal batteries (LMBs) is critically essential. Herein, a novel electrolyte system with thermoresponsive characteristics is designed to largely enhance the thermal safety of 1.0 Ah LMBs. Specifically, vinyl carbonate (VC) with
Si Yeol Lee et al.
ACS omega, 5(7), 3579-3587 (2020-03-03)
Nanolithia-based materials are promising lithium-ion battery cathodes owing to their high capacity, low overpotential, and stable cyclic performance. Their properties are highly dependent on the structure and composition of the catalysts, which play a role in activating the lithia to
Yanting Jin et al.
Journal of the American Chemical Society, 140(31), 9854-9867 (2018-07-07)
Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are widely used as electrolyte additives in lithium ion batteries. Here we analyze the solid electrolyte interphase (SEI) formed on binder-free silicon nanowire (SiNW) electrodes in pure FEC or VC electrolytes containing 1

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持