产品名称
银, wire reel, 1m, diameter 2.0mm, annealed, 99.99%
InChI
1S/Ag
SMILES string
[Ag]
InChI key
BQCADISMDOOEFD-UHFFFAOYSA-N
assay
99.99%
form
wire
manufacturer/tradename
Goodfellow 106-632-19
resistivity
1.59 μΩ-cm, 20°C
L × diam.
1 m × 2.0 mm
bp
2212 °C (lit.)
mp
960 °C (lit.)
density
10.49 g/cm3 (lit.)
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
存储类别
13 - Non Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Pakvirun Thuesombat et al.
Ecotoxicology and environmental safety, 104, 302-309 (2014-04-15)
With the advances in nanotechnology, silver nanoparticles (AgNPs) have been applied in many industries, increasing their potential exposure level in the environment, yet their environmental safety remains poorly evaluated. The possible effects of different sized AgNPs (20, 30-60, 70-120 and
Cheng-Kuan Su et al.
Toxicology letters, 227(2), 84-90 (2014-04-08)
With the increasing prevalence of silver nanoparticles (AgNPs) in various products, whether such AgNPs will introduce new injury mechanisms from new pathologies remains to be determined. From the toxicokinetic viewpoint, it is vital to have in-depth knowledge of their in
Yu Sun et al.
Journal of nanoscience and nanotechnology, 14(6), 4481-4485 (2014-04-18)
The fluorescence enhancement effect of Rh6G molecules deposited on the silver film substrate decorated with nanohole arrays was investigated in this paper. The prepared substrate, decorated with nanohole arrays, was fabricated with the deposition of silver films onto the anodic
Dawei Guo et al.
Journal of biomedical nanotechnology, 10(4), 669-678 (2014-04-17)
Several studies have suggested that silver nanoparticles (AgNPs) have the potential to treat human cancers, including leukemia. However, the detailed cellular mechanisms for AgNPs to inhibit the growth of leukemic cells and their efficacy on clinical isolates of leukemic patients
Swarup Roy et al.
Journal of nanoscience and nanotechnology, 14(7), 4899-4905 (2014-04-25)
Binding interaction of biologically synthesized silver nanoparticles with bovine serum albumin (BSA) has been investigated by UV-Vis and fluorescence spectroscopic techniques. UV-Vis analysis implies the formation of the ground state complex between BSA and silver nanoparticles. The analysis of fluorescence
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持