Quality Level
Application
Disclaimer
General description
Nuclear RIP反应既可以使用经甲醛处理、相互作用被固定的染色质(交联法),也可使用未经交联剂处理的染色质(天然法)。虽然这两种方法都用来回收染色质相关RNA,但所用的试剂、方案细节、通常检测的相互作用类型都有差异。交联法捕获的复合物分子量较高,体内互作亲和力一般较弱。相反,天然法捕获的是蛋白编码RNA结合基序与候选RNA直接互作形成的复合物,互作亲和力更强。如对蛋白及蛋白复合物尚未明确了解,一般可同时采用2种方法。
Other Notes
Packaging
Legal Information
signalword
Danger
hcodes
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 2 - Eye Dam. 1 - Skin Irrit. 2
存储类别
10 - Combustible liquids
法规信息
相关内容
"Gene regulation plays a critical role in complex cellular processes such as development, differentiation, and cellular response to environmental changes. While the regulation of gene expression by transcription factors and epigenetic influences has been well studied over time, pervasive genomic transcription and the role of non-coding RNAs in this process is a rapidly evolving field that remains to be thoroughly explored. Chromatin is typically thought of as a complex of DNA, histones, and non-histone proteins, and RNA. Historically, mRNA was considered to be the only RNA associated with chromatin. These mRNAs would transiently associate with chromatin during transcription then exit the nucleus for translation. However, mounting evidence suggests that various classes of non-coding RNAs (e.g. long non-coding RNAs (lncRNA) small nuclear RNAs (snRNA), enhancer RNAs (eRNA) etc.) are associated with chromatin and likely serve regulatory functions1-3. For the past several years chromatin immunoprecipitation (ChIP) has been used to interrogate association of proteins with genomic DNA sequences. The need to better understand the RNA component of chromatin has driven the development of additional methods to allow analysis and characterization of chromatin associated RNA. One approach used to detect and identify RNA molecules that interact with a specific protein is RNAbinding protein immunoprecipitation (RIP)4. This method allows the immunoprecipitation of protein:RNA complexes that are both nuclear and cytoplasmic using whole cell lysates generated using kit such as the Magna RIP™ RNA Binding Protein Immunoprecipitation Kit."
Cancer is a complex disease manifestation. At its core, it remains a disease of abnormal cellular proliferation and inappropriate gene expression. In the early days, carcinogenesis was viewed simply as resulting from a collection of genetic mutations that altered the gene expression of key oncogenic genes or tumor suppressor genes leading to uncontrolled growth and disease (Virani, S et al 2012). Today, however, research is showing that carcinogenesis results from the successive accumulation of heritable genetic and epigenetic changes. Moreover, the success in how we predict, treat and overcome cancer will likely involve not only understanding the consequences of direct genetic changes that can cause cancer, but also how the epigenetic and environmental changes cause cancer (Johnson C et al 2015; Waldmann T et al 2013). Epigenetics is the study of heritable gene expression as it relates to changes in DNA structure that are not tied to changes in DNA sequence but, instead, are tied to how the nucleic acid material is read or processed via the myriad of protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid interactions that ultimately manifest themselves into a specific expression phenotype (Ngai SC et al 2012, Johnson C et al 2015). This review will discuss some of the principal aspects of epigenetic research and how they relate to our current understanding of carcinogenesis. Because epigenetics affects phenotype and changes in epigenetics are thought to be key to environmental adaptability and thus may in fact be reversed or manipulated, understanding the integration of experimental and epidemiologic science surrounding cancer and its many manifestations should lead to more effective cancer prognostics as well as treatments (Virani S et al 2012).
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持
