产品名称
Calmodulin Kinase IINtide, Myristoylated, The myristoylated form of CaMK IINtide.
assay
≥95% (HPLC)
form
solid
manufacturer/tradename
Calbiochem®
storage condition
OK to freeze, desiccated (hygroscopic)
color
white
solubility
DMSO: 5 mg/mL
shipped in
ambient
storage temp.
−20°C
Quality Level
General description
The myristoylated form of CaMK IINtide (Cat. No. 208920), a potent, specific inhibitor of Ca2+/Calmodulin kinase II (CaMK II) (IC50 = 50 nM for total and Ca2+-independent CaMK II activity). The peptide sequence corresponds to the inhibitory domain of the CaMK II inhibitory protein, CaMK IIN. Exhibits inhibitory activity across converged species, including rat brain, goldfish brain, and Drosophila (IC50 = 100-400 nM). Shown to completely inhibit the phosphorylation of GluR1 fusion protein at a concentration of 1 µM. Does not inhibit CaMK I, CaMK IV, CaMKK, PKA, or PKC. The peptide has been modified at the amino terminal lysine with the addition of three glycine residues and myristoylated to improve cell-permeability.
Biochem/physiol Actions
Cell permeable: yes
Primary Target
Calmodulin-Dependent Protein Kinase (CaM Kinase)-2
Calmodulin-Dependent Protein Kinase (CaM Kinase)-2
Product does not compete with ATP.
Reversible: no
Target IC50: 50 nM against cam Kinase-2
Packaging
Packaged under inert gas
Physical form
Supplied as a trifluoroacetate salt.
Preparation Note
Following reconstitution aliquot and freeze (-20°C). Stock solutions are stable for up to 6 months at-20°C.
Other Notes
Myr-N-Gly-Gly-Gly-Lys-Arg-Pro-Pro-Lys-Leu-Gly-Gln-Ile-Gly-Arg-Ala-Lys-Arg-Val-Val-Ile-Glu-Asp-Asp-Arg-Ile-Asp-Asp-Val-Leu-Lys-OH
Sodering, T.R., et al. 2001. J. Biol. Chem.276, 3719.
Chang, B.H., et al. 1998. Proc. Natl. Acad. Sci. USA95, 10890.
Pereda, A.E., et al. 1998. Proc. Natl. Acad. Sci. USA95, 13272.
Chang, B.H., et al. 1998. Proc. Natl. Acad. Sci. USA95, 10890.
Pereda, A.E., et al. 1998. Proc. Natl. Acad. Sci. USA95, 13272.
Legal Information
CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany
Disclaimer
Toxicity: Standard Handling (A)
存储类别
11 - Combustible Solids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
Rabia Anjum et al.
PloS one, 19(7), e0301063-e0301063 (2024-07-12)
Synaptic plasticity, the process whereby neuronal connections are either strengthened or weakened in response to stereotyped forms of stimulation, is widely believed to represent the molecular mechanism that underlies learning and memory. The holoenzyme calcium/calmodulin-dependent protein kinase II (CaMKII) plays
Xiumin Chen et al.
Proceedings of the National Academy of Sciences of the United States of America, 121(26), e2402783121-e2402783121 (2024-06-18)
Ca2+/calmodulin (CaM)-dependent kinase II (CaMKII) plays a critical role in long-term potentiation (LTP), a well-established model for learning and memory through the enhancement of synaptic transmission. Biochemical studies indicate that CaMKII catalyzes a phosphotransferase (kinase) reaction of both itself (autophosphorylation)
Synaptic memory survives molecular turnover.
Lee, et al.
Proceedings of the National Academy of Sciences of the USA, 119, e2211572119-e2211572119 (2023)
Wucheng Tao et al.
eLife, 10 (2021-12-16)
Long-term potentiation (LTP) is arguably the most compelling cellular model for learning and memory. While the mechanisms underlying the induction of LTP ('learning') are well understood, the maintenance of LTP ('memory') has remained contentious over the last 20 years. Here
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持