产品名称
Formin FH2 Domain Inhibitor, SMIFH2, The Formin FH2 Domain Inhibitor, SMIFH2, also referenced under CAS 340316-62-3, controls the biological activity of Formin FH2 Domain. This small molecule/inhibitor is primarily used for Membrane applications.
质量水平
方案
≥98% (sum of two geometrical isomers, HPLC)
表单
solid
制造商/商品名称
Calbiochem®
储存条件
OK to freeze
protect from light
颜色
darkdeep green
溶解性
DMSO: 50 mg/mL
运输
ambient
储存温度
2-8°C
SMILES字符串
S=C1N(C(=O)\C(=C\c3[o]ccc3)\C(=O)N1)c2cc(ccc2)Br
InChI
1S/C15H9BrN2O3S/c16-9-3-1-4-10(7-9)18-14(20)12(13(19)17-15(18)22)8-11-5-2-6-21-11/h1-8H,(H,17,19,22)/b12-8+
InChI key
MVFJHEQDISFYIS-XYOKQWHBSA-N
相关类别
一般描述
A cell-permeable thiooxodihydropyrimidinedione compound that inhibits both formin-mediated, profilin-independent actin nucleation (IC50 ~15 µM using mDia1 or mDia2) and formin-mediated elongation of actin filaments in the presence of profilin (IC50 ~4 µM using Cdc12 or mDia2), but not the Arp2/3-mediated or formin-independent actin assembly. SMIFH2 targets the FH2 (formin homology 2) domain of formins from a large variety of species, including murine mDia1/2, C. elegans CYK-1, S. pombe Cdc12, S. pombe Fus1, and S. cerevisiae Bni1, and decreases formin affinity for the actin filament barbed end. SMIFH2, at 25 µM, is shown to selectively disrupt formin-dependent actin cables and contractile rings, but not Arp2/3-dependent, CK-666- (Cat. No. 182515) sensitive actin patches, in fission yeast. SMIFH2 is also demonstrated to affect F-actin cytoskeleton structures and cell migration (by a 2-fold decrease at 10 µM) in NIH 3T3 fibroblast cultures.
包装
Packaged under inert gas
制备说明
Use only fresh DMSO. Following reconstiution, aliquot an freeze (-20°C). Stock solutions are stable for up to 3 months at -20°C.
其他说明
Rizvi, S.A., et al. 2009. Chem. Biol.16, 1158.
法律信息
CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany
免责声明
Toxicity: Standard Handling (A)
储存分类代码
11 - Combustible Solids
WGK
WGK 3
闪点(°F)
Not applicable
闪点(°C)
Not applicable
Tushna Kapoor et al.
Cell reports, 34(13), 108918-108918 (2021-04-01)
Membrane curvature recruits Bin-Amphiphysin-Rvs (BAR)-domain proteins and induces local F-actin assembly, which further modifies the membrane curvature and dynamics. The downstream molecular pathway in vivo is still unclear. Here, we show that a tubular endomembrane scaffold supported by contractile actomyosin stabilizes
Shintaro Miyazaki et al.
iScience, 26(5), 106594-106594 (2023-05-30)
It has been reported that the MDCK cell tight junction shows stochastic fluctuation and forms the interdigitation structure, but the mechanism of the pattern formation remains to be elucidated. In the present study, we first quantified the shape of the
Jia C Wang et al.
eLife, 11 (2022-04-12)
B-cell activation and immune synapse (IS) formation with membrane-bound antigens are actin-dependent processes that scale positively with the strength of antigen-induced signals. Importantly, ligating the B-cell integrin, LFA-1, with ICAM-1 promotes IS formation when antigen is limiting. Whether the actin
Daniel Blumenthal et al.
eLife, 9 (2020-07-29)
T cell activation by dendritic cells (DCs) involves forces exerted by the T cell actin cytoskeleton, which are opposed by the cortical cytoskeleton of the interacting antigen-presenting cell. During an immune response, DCs undergo a maturation process that optimizes their
Tushna Kapoor et al.
STAR protocols, 3(1), 101020-101020 (2022-01-04)
Here we describe a simple step-by-step protocol for collecting high-resolution, time-lapse images of intact Drosophila testis ex vivo for a limited period using a confocal microscope, with minimum photo-toxic damage, to monitor spermatid individualization, coiling, and release. The F-actin dynamics during
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持