跳转至内容
Merck
CN

5.30537

JmjC Histone Demethylase Inhibitor, n-Octyl-IOX1

别名:

JmjC Histone Demethylase Inhibitor, n-Octyl-IOX1, KDM4 Inhibitor

登录 查看组织和合同定价。

选择尺寸


关于此项目

经验公式(希尔记法):
C18H23NO3
化学文摘社编号:
分子量:
301.38
MDL number:
NACRES:
NA.77
UNSPSC Code:
12352200
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

assay

≥98% (HPLC)

form

solid

manufacturer/tradename

Calbiochem®

storage condition

OK to freeze
protect from light

color

gray-green

solubility

DMSO: 5 mg/mL

storage temp.

−20°C

Quality Level

Legal Information

CALBIOCHEM is a registered trademark of Merck KGaA, Darmstadt, Germany

Biochem/physiol Actions

Cell permeable: yes
Primary Target
KDM4
Reversible: yes

Disclaimer

Toxicity: Standard Handling (A)

General description

A cell-permeable, non-toxic, n-octyl ester form of 5-carboxy-8-hydroxyquinoline (IOX1, Cat. No. 420201) that acts as a superior inhibitor of Jumonji C domain histone lysine demethylase. Shown to be about 30 fold more potent than IOX1 (EC50 = 3.8 µM for KDM4A in HeLa cells vs. 100 µM for IOX1). Inhibits the H3K9 me3 demethylation activity of KDM4C (IC50 = 3.9 µM in ALPHA Screen assay). Exhibits greater stability to hydrolysis in the ALPHA Screen buffer.

Please note that the molecular weight for this compound is batch-specific due to variable water content.

Other Notes

Schiller, R., et al. 2014. ChemMedChem.9,566.

Packaging

Packaged under inert gas

Preparation Note

Following reconstitution, aliquot and freeze (-20°C). Stock solutions are stable for up to 3 months at -20°C.

存储类别

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

法规信息

新产品
此项目有

分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

相关内容

Cancer is a complex disease manifestation. At its core, it remains a disease of abnormal cellular proliferation and inappropriate gene expression. In the early days, carcinogenesis was viewed simply as resulting from a collection of genetic mutations that altered the gene expression of key oncogenic genes or tumor suppressor genes leading to uncontrolled growth and disease (Virani, S et al 2012). Today, however, research is showing that carcinogenesis results from the successive accumulation of heritable genetic and epigenetic changes. Moreover, the success in how we predict, treat and overcome cancer will likely involve not only understanding the consequences of direct genetic changes that can cause cancer, but also how the epigenetic and environmental changes cause cancer (Johnson C et al 2015; Waldmann T et al 2013). Epigenetics is the study of heritable gene expression as it relates to changes in DNA structure that are not tied to changes in DNA sequence but, instead, are tied to how the nucleic acid material is read or processed via the myriad of protein-protein, protein-nucleic acid, and nucleic acid-nucleic acid interactions that ultimately manifest themselves into a specific expression phenotype (Ngai SC et al 2012, Johnson C et al 2015). This review will discuss some of the principal aspects of epigenetic research and how they relate to our current understanding of carcinogenesis. Because epigenetics affects phenotype and changes in epigenetics are thought to be key to environmental adaptability and thus may in fact be reversed or manipulated, understanding the integration of experimental and epidemiologic science surrounding cancer and its many manifestations should lead to more effective cancer prognostics as well as treatments (Virani S et al 2012).

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持