跳转至内容
Merck
CN

07969

O-(2-氨基乙基)聚乙二醇 3,000

Mp 3,000

别名:

氨基聚乙二醇

登录 查看组织和合同定价。

选择尺寸


关于此项目

线性分子式:
NH2(CH2CH2O)nH
化学文摘社编号:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.22
MDL number:
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

InChI key

HZAXFHJVJLSVMW-UHFFFAOYSA-N

InChI

1S/C2H7NO/c3-1-2-4/h4H,1-3H2

SMILES string

[H]OCCN

mol wt

Mp 3,000

reaction suitability

reagent type: cross-linking reagent

Ω-end

hydroxyl

α-end

amine

Quality Level

General description

O -(2-氨基乙基)聚乙二醇是可用于缀合和交联反应的杂双官能聚乙二醇(羟基-PEG-胺)。

Application

O-(2-氨基乙基)聚乙二醇已用于合成PEG-聚(D,L-丙交酯-co-乙交酯)(PEG-PLGA)共轭物,用于合成基于PLGA的 纳米粒子。

存储类别

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Molly A Sowers et al.
Nature communications, 5, 5460-5460 (2014-11-19)
Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents--ORCAFluors--for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures
Alan O Burts et al.
Photochemistry and photobiology, 90(2), 380-385 (2013-10-15)
New strategies for the synthesis of multifunctional particles that respond to external stimuli and release biologically relevant agents will enable the discovery of new formulations for drug delivery. In this article, we combine two powerful methods: brush-first ring-opening metathesis polymerization
Jeremiah A Johnson et al.
Journal of the American Chemical Society, 133(3), 559-566 (2010-12-15)
The combination of highly efficient polymerizations with modular "click" coupling reactions has enabled the synthesis of a wide variety of novel nanoscopic structures. Here we demonstrate the facile synthesis of a new class of clickable, branched nanostructures, polyethylene glycol (PEG)-branch-azide
Angela X Gao et al.
ACS macro letters, 3(9), 854-857 (2014-09-23)
A panel of acid-labile bis-norbornene cross-linkers was synthesized and evaluated for the formation of acid-degradable brush-arm star polymers (BASPs) via the brush-first ring-opening metathesis polymerization (ROMP) method. An acetal-based cross-linker was identified that, when employed in conjunction with a poly(ethylene
Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil.
El-Hammadi
International Journal of Pharmaceutics, 516(1-2), 61-70 (2017)

商品

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持