登录 查看组织和合同定价。
选择尺寸
关于此项目
线性分子式:
Na2S2O8
化学文摘社编号:
分子量:
238.10
NACRES:
NA.25
PubChem Substance ID:
UNSPSC Code:
12161700
EC Number:
231-892-1
MDL number:
Assay:
≥99%
Solubility:
H2O: 1 M at 20 °C, clear, colorless
产品名称
过硫酸钠, BioXtra, ≥99%
InChI key
CHQMHPLRPQMAMX-UHFFFAOYSA-L
InChI
1S/2Na.H2O8S2/c;;1-9(2,3)7-8-10(4,5)6/h;;(H,1,2,3)(H,4,5,6)/q2*+1;/p-2
SMILES string
[Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O
product line
BioXtra
assay
≥99%
reaction suitability
reagent type: oxidant
impurities
<0.0005% Phosphorus (P)
<0.1% Insoluble matter
solubility
H2O: 1 M at 20 °C, clear, colorless
anion traces
chloride (Cl-): <0.05%
cation traces
Al: <0.0005%
Ca: <0.005%
Cu: <0.0005%
Fe: <0.0005%
K: <0.02%
Mg: <0.001%
Pb: <0.001%
Zn: <0.0005%
Quality Level
正在寻找类似产品? 访问 产品对比指南
Application
<ul>
<li><strong>使用三维电极系统对垃圾渗滤液中的有机污染物进行电化学处理。</strong>本研究考察了使用三维电极系统对垃圾渗滤液进行电化学处理。过硫酸钠作为氧化剂可有效降解有机污染物,这为废物管理和环境保护提供了一种潜在方法(Yu et al., 2020)。</li>
<li><strong>Box-Benkhen实验设计法优化高浓度苯酚和有机物废水的电催化处理工艺。</strong>本文讨论了使用过硫酸钠对含有高浓度苯酚和有机物的废水进行电催化处理工艺优化。该研究为提高废水处理效率提供了宝贵意见(GilPavas et al., 2009)。</li>
<li><strong>果胶与甲基丙烯酸缩水甘油酯发生反应,并通过网状作用进一步形成游离膜。</strong>该研究使用甲基丙烯酸缩水甘油酯对果胶进行化学改性,然后使用过硫酸钠进行交联,从而形成自支撑薄膜。这些薄膜在药品和食品包装中具有潜在应用价值(Maior et al., 2008)。</li>
</ul>
<li><strong>使用三维电极系统对垃圾渗滤液中的有机污染物进行电化学处理。</strong>本研究考察了使用三维电极系统对垃圾渗滤液进行电化学处理。过硫酸钠作为氧化剂可有效降解有机污染物,这为废物管理和环境保护提供了一种潜在方法(Yu et al., 2020)。</li>
<li><strong>Box-Benkhen实验设计法优化高浓度苯酚和有机物废水的电催化处理工艺。</strong>本文讨论了使用过硫酸钠对含有高浓度苯酚和有机物的废水进行电催化处理工艺优化。该研究为提高废水处理效率提供了宝贵意见(GilPavas et al., 2009)。</li>
<li><strong>果胶与甲基丙烯酸缩水甘油酯发生反应,并通过网状作用进一步形成游离膜。</strong>该研究使用甲基丙烯酸缩水甘油酯对果胶进行化学改性,然后使用过硫酸钠进行交联,从而形成自支撑薄膜。这些薄膜在药品和食品包装中具有潜在应用价值(Maior et al., 2008)。</li>
</ul>
signalword
Danger
Hazard Classifications
Acute Tox. 4 Oral - Ox. Sol. 3 - Resp. Sens. 1 - Skin Irrit. 2 - Skin Sens. 1 - STOT SE 3
target_organs
Respiratory system
存储类别
5.1B - Oxidizing hazardous materials
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges
法规信息
危险化学品
此项目有
Chia-Hsien Yen et al.
Journal of hazardous materials, 186(2-3), 2097-2102 (2011-01-25)
In this study, batch experiments were conducted to evaluate the feasibility of petroleum-hydrocarbon contaminated soil remediation using persulfate oxidation. Various controlling factors including different persulfate and ferrous ion concentrations, different oxidants (persulfate, hydrogen peroxide, and permanganate), and different contaminants (diesel
Olha S Furman et al.
Environmental science & technology, 44(16), 6423-6428 (2010-08-14)
Base is the most commonly used activator of persulfate for the treatment of contaminated groundwater by in situ chemical oxidation (ISCO). A mechanism for the base activation of persulfate is proposed involving the base-catalyzed hydrolysis of persulfate to hydroperoxide anion
José Fenoll et al.
Journal of hazardous materials, 244-245, 370-379 (2012-12-29)
The photocatalytic degradation of sixteen substituted phenylurea herbicides (PUHs) in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO(2)) as photocatalyst under artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in
Ya-Ting Lin et al.
Chemosphere, 82(8), 1168-1172 (2011-01-12)
Using ultraviolet photolytic persulfate activation to produce two sulfate radicals (SO(4)(-)) exhibits a potential for destroying organic contaminants in wastewater treatment applications. This study investigated both the feasibility of using a UV/SPS (sodium persulfate) process to treat phenol in aqueous
Zhiguo Zhang et al.
The Journal of organic chemistry, 77(17), 7665-7670 (2012-08-02)
Mediated by sodium persulfate (Na(2)S(2)O(8)), a series of polysubstituted 4-pyridones were synthesized via self-condensation of N-aryl acetoacetamides, during which a novel N to C 1,3-acyl migration should be involved. The structure of 4-pyridone was unequivocally confirmed by X-ray diffraction analysis.
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持

