产品名称
MISSION® esiRNA, targeting human REST
description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
GAGCGAGTATCACTGGAGGAAACATTTAAGAAACCATTTTCCAAGGAAAGTATACACATGTGGAAAATGCAACTATTTTTCAGACAGAAAAAACAATTATGTTCAGCATGTTAGAACTCATACAGGAGAACGCCCATATAAATGTGAACTTTGTCCTTACTCAAGTTCTCAGAAGACTCATCTAACTAGACATATGCGTACTCATTCAGGTGAGAAGCCATTTAAATGTGATCAGTGCAGTTATGTGGCCTCTAATCAACATGAAGTAACCCGCCATGCAAGACAGGTTCACAATGGGCCTAAACCTCTTAATTGCCCACACTGTGATTACAAAACAGCAGATAGAAGCAACTTCAAAAAACATGTAGAGCTACATGTGAACCCACGGCAGTTCAATTGCCCTGTATGTGACTATGCAGCTTCCAAG
Ensembl | human accession no.
NCBI accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
Gene Information
human ... REST(5978), REST(5978)
General description
MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Gopal Pandi et al.
PloS one, 8(3), e58039-e58039 (2013-03-22)
Recent studies showed that stroke extensively alters cerebral microRNA (miRNA) expression profiles and several miRNAs play a role in mediating ischemic pathophysiology. We currently evaluated the significance of miR-29c, a highly expressed miRNA in rodent brain that was significantly down-regulated
Rui Wang et al.
International journal of molecular medicine, 42(5), 2831-2838 (2018-08-23)
Type 1 diabetes involves the immunologically mediated destruction of insulin‑producing cells (IPCs) in the pancreatic islet. Mesenchymal stem cells (MSCs) have the ability to differentiate into IPCs and have become the most promising means for diabetes therapy. The present study
Wai Hon Chooi et al.
Biomaterials science, 6(11), 3019-3029 (2018-10-03)
The use of human induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) is an attractive therapeutic option for damaged nerve tissues. To direct neuronal differentiation of stem cells, we have previously developed an electrospun polycaprolactone nanofiber scaffold that was functionalized
James C Geoghegan et al.
Molecular therapy. Nucleic acids, 1, e53-e53 (2012-01-01)
Delivery of small interfering RNA (siRNA) targeted to specific cell types is a significant challenge for the development of RNA interference-based therapeutics. Recently, PTD-DRBD, a double-stranded RNA binding domain (DRBD) fused to the TAT protein transduction domain (PTD), was shown
Wei Wang et al.
Molecular biology of the cell, 22(6), 868-879 (2011-01-29)
Developing neurons undergo a series of maturational stages, and the timing of these events is critical for formation of synaptic circuitry. Here we addressed temporal regulation of the Gabra6 gene, which is expressed in a delayed manner during dendritogenesis in
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持