产品名称
MISSION® esiRNA, targeting human XRCC4
description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
TCAGACTTGGTTCCTTCAACCTAGAGAAAGTTGAAAACCCAGCTGAAGTCATTAGAGAACTTATTTGTTATTGCTTGGACACCATTGCAGAAAATCAAGCCAAAAATGAGCACCTGCAGAAAGAAAATGAAAGGCTTCTGAGAGATTGGAATGATGTTCAAGGACGATTTGAAAAATGTGTGAGTGCTAAGGAAGCTTTGGAGACTGATCTTTATAAGCGGTTTATTCTGGTGTTGAATGAGAAGAAAACAAAAATCAGAAGTTTGCATAATAAATTATTAAATGCAGCTCAAGAACGAGAAAAGGACATCAAACAAGAAGGGGAAACTGCAATCTGTTCTGAAATGACTGCTGACCGAGATCCAGTCTATGATGAGAGTACTGATGAGGAAAGTGAAAACCAAACTGATCTCTCTGGGTTGGCTT
Ensembl | human accession no.
NCBI accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
Gene Information
human ... XRCC4(7518), XRCC4(7518)
General description
MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Wen Li et al.
Nature cell biology, 21(10), 1273-1285 (2019-09-25)
Chromosome translocation is a major cause of the onset and progression of diverse types of cancers. However, the mechanisms underlying this process remain poorly understood. Here, we identified a non-homologous end-joining protein, IFFO1, which structurally forms a heterotetramer with XRCC4.
Idit Hazan et al.
Cell reports, 29(3), 560-572 (2019-10-17)
DNA double-strand breaks (DSBs) are deleterious and tumorigenic but could also be essential for DNA-based processes. Yet the landscape of physiological DSBs and their role and repair are still elusive. Here, we mapped DSBs at high resolution in cancer and
Masahiro Terasawa et al.
PLoS genetics, 10(8), e1004563-e1004563 (2014-08-29)
DNA double-strand breaks (DSBs) can be repaired by one of two major pathways-non-homologous end-joining (NHEJ) and homologous recombination (HR)-depending on whether cells are in G1 or S/G2 phase, respectively. However, the mechanisms of DSB repair during M phase remain largely
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持