description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
TCCACATTTTTGTGCTTGGATATAAGATGTATTTCTTGTAGTGAAGTTGTTTTGTAATCTACTTTGTATACATTCTAATTATATTATTTTTCTATGTATTTTAAATGTATATGGCTGTTTAATCTTTGAAGCATTTTGGGCTTAAGATTGCCAGCAGCACACATCAGATGCAGTCATTGTTGCTATCAGTGTGGAATTTGATAGAGTCTAGACTCGGGCCACTTGGAGTTGTGTACTCCAAAGCTAAGGACAGTGATGAGGAAGATGGCA
Ensembl | human accession no.
NCBI accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
General description
MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Feng Shi et al.
Oncotarget, 8(51), 88453-88463 (2017-11-29)
SYF2, a known cell cycle regulator, is reported to be involved in cell cycle arrest by interacting with cyclin-D-type binding protein 1. In the present study, we investigated the role of SYF2 in human breast cancer (BC) progression. SYF2 was
Youmao Tao et al.
Archives of biochemistry and biophysics, 688, 108406-108406 (2020-05-18)
Increasing evidence indicates that aberrantly expressed microRNAs play a role in tumorigenesis and progression of gastric cancer. Recently, a novel cancer-related microRNA, miR-621, was found to be involved in cancer pathogenesis. However, the precise molecular mechanisms underlying the oncogenic activity
Chia-Hsin Chen et al.
PloS one, 7(3), e33538-e33538 (2012-03-27)
Human p29 is a putative component of spliceosomes, but its role in pre-mRNA is elusive. By siRNA knockdown and stable overexpression, we demonstrated that human p29 is involved in DNA damage response and Fanconi anemia pathway in cultured cells. In
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持