产品名称
MISSION® esiRNA, targeting human HIPK2
description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
TTGGCCGTTATATCCAGGAGCTTCGGAGTATGATCAGATTCGGTATATTTCACAAACACAGGGTTTGCCTGCTGAATATTTATTAAGCGCCGGGACAAAGACAACTAGGTTTTTCAACCGTGACACGGACTCACCATATCCTTTGTGGAGACTGAAGACACCAGATGACCATGAAGCAGAGACAGGGATTAAGTCAAAAGAAGCAAGAAAGTACATTTTCAACTGTTTAGATGATATGGCCCAGGTGAACATGACGACAGATTTGGAAGGGAGCGACATGTTGGTAGAAAAGGCTGACCGGCGGGAGTTCATTGACCTGTTGAAGAAGATGCTGACCATTGATGCTGACAAGAGAATCACTCCAATCGAAACCCTGAACCATCCCTTTGTCACCATGACACACTTACTCGATTTTCCCCACAGC
Ensembl | human accession no.
NCBI accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
Gene Information
human ... HIPK2(28996), HIPK2(28996)
General description
MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
存储类别
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Yi-Xuan Zhao et al.
Annals of plastic surgery, 79(6), 546-551 (2017-10-21)
Epithelial-mesenchymal transition (EMT) plays a critical role in fibrotic keloid formation, which is characterized by excessive collagen and extracellular matrix synthesis and deposition. Growing evidence suggests that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) acts upstream of several major
Zhengyu Jiang et al.
Cell death & disease, 9(9), 847-847 (2018-08-30)
Sepsis is the leading cause of death in intensive care units worldwide. Autophagy has recently been shown to protect against sepsis-induced liver injury. Here, we investigated the roles of homeodomain-interacting protein kinase 2 (HIPK2) in the molecular mechanism of sepsis-induced
Luyang Xu et al.
Theranostics, 9(9), 2712-2726 (2019-05-28)
The molecular mechanism underlying the transition of acute kidney injury (AKI) to chronic kidney disease (CKD) induced by vancomycin (VAN) remains largely unknown. Methods: The mice model of VAN drives AKI to CKD was developed to investigate the role and
Xiaoyan Dang et al.
Chemico-biological interactions, 316, 108922-108922 (2019-12-15)
Homeodomain interacting protein kinase-2 (HIPK2) has emerged as a crucial stress-responsive kinase that plays a critical role in regulating cell survival and apoptosis. However, whether HIPK2 participates in regulating cardiomyocyte survival during myocardial ischemia/reperfusion injury remains unclear. Here, we investigated
Xianhui Wen et al.
Experimental and therapeutic medicine, 21(4), 355-355 (2021-03-19)
Currently, bone marrow transplantation remains the basic treatment for various hematological tumors and irradiation is one of the most important pretreatment methods. However, irradiation pretreatment may result in damage to bone mesenchymal stem cells (BMSCs). The present study aimed to
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持